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Abstract 
 

 Expectation of profit is the economic driving force 

motivating business activity in a free-enterprise 

economy. An increase in this profit for a given 

organization can be accomplished by discovering and 

following any of a number of courses of improved 

action. This paper presents an economic optimization 

of a hypothetical but realistic Kraft pulping system, 

which forms an integral part of a Pulp and Paper 

industry, using Particle Swarm Optimization (PSO) 

and Differential Evolution (DE). Simulation results 

obtained are comparable (and are slightly better) with 

the given results which show that these algorithms are 

quite competent for solving large scale industrial 

optimization problems in a very small time.  

 

1. Introduction 
 

      Paper industry accounts for nearly 3.5% of world’s 

industrial production and 2% of world trade. Current 

annual consumption of paper is of the order of 270 

million tones. This industry is 10
th

 major section in 

India. Paper industry has some major sections like 

pulping and recovery cycle, stock preparation and 

machine operation etc. Kraft process is a dominant 

chemical pulping process which uses NaOH and Na2S 

as puling chemicals. The Kraft pulping and recovery 

cycle operations comprise a reasonably isolated, yet 

complex, subsystem of an integrated papermaking 

process which requires sophisticated mathematical 

techniques for optimization.  

For the past few decades, stochastic techniques have 

become very popular for solving complex optimization 

problems which are otherwise difficult to solve by the 

classical optimization techniques [1], [2]. The 

popularity of these algorithms is mainly because of two 

reasons; firstly they work with population of solutions 

rather than with a single point and secondly they do not 

depend on the mathematical properties of the objective 

function or the search space. Some well known 

stochastic techniques include Evolutionary and Genetic 

Algorithms [3] – [6], PSO [7], [8], DE [9], [10] etc. In 

this paper we have chosen PSO and DE for optimizing 

the Kraft pulping process for a Pulp and Paper 

industry. 

The remaining paper is organized as follows: In section 

2 and 3, we have briefly described the PSO and DE 

algorithms; section 4 explains the constrained handling 

approach for these algorithms. Section 5 describes the 

mathematical model of the given problem and 

simulation results, finally the paper concludes with 

section 6. 

 

2. Particle Swarm Optimization 
 

     Particle swarm optimization technique is a 

population based stochastic search technique first 

suggested by Kennedy and Eberhart in 1995. The 

mechanism of PSO is inspired from the complex social 

behavior shown by the natural species. For a D-

dimensional search space the position of the ith particle 

is represented as Xi = (xi1,xi2,..xiD). Each particle 

maintains a memory of its previous best position Pi = 

(pi1, pi2… piD) and a velocity Vi = (vi1, vi2,…viD) along 

each dimension . At each iteration, the P vector of the 

particle with best fitness in the local neighborhood, 

designated g, and the P vector of the current particle 

are combined to adjust the velocity along each 

dimension and a new position of the particle is 

determined using that velocity. The two basic equations 

which govern the working of PSO are that of velocity 

vector and position vector are given by: 
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The first part of equation (1) represents the inertia 

of the previous velocity, the second part is tells us 

about the personal thinking of the particle and the third 

part represents the cooperation among particles and is 

therefore named as the social component. Acceleration 

constants c1, c2 and inertia weight ω are predefined by 

the user and r1, r2 are the uniformly generated random 

numbers in the range of [0, 1] [16]14,15,16].  

 

3. Differential Evolution 
 

     Differential Evolution is a simple powerful 

evolutionary algorithm for global optimization 

proposed by Storn and Price. It is a population based 

algorithm like genetic algorithms using the similar 

operator; crossover, mutation and selection. The main 

difference in constructing better solutions is that 

genetic algorithms rely on crossover while DE relies on 

mutation operator [11]. DE works as follows: First, all 

individuals are initialized with uniformly distributed 

random numbers and evaluated using the fitness 

function provided. Then the following will be executed 

until maximum number of generation has been reached 

or an optimum solution is found.  

For a D-dimensional search space, each target 

vector gix , , a mutant vector is generated by 
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where },....,2,1{,, 321 NPrrr ∈ are randomly chosen 

integers, must be different from each other and also 

different from the running index i. F (>0) is a scaling 

factor which controls the amplification of the 

differential evolution )( ,,
32

grgr xx − . In order to 

increase the diversity of the perturbed parameter 

vectors, crossover is introduced [10]. The parent vector 

is mixed with the mutated vector to produce a trial 

vector 1, +gjiu , 
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where j = 1, 2,……, D; ]1,0[∈jrand ; CR is the 

crossover constant takes values in the range    [0, 1] 

and ),.....,2,1( Djrand ∈ is the randomly chosen index. 

Selection is the step to choose the vector between the 

target vector and the trial vector with the aim of 

creating an individual for the next generation. 

4. Penalty Method for Constrained 

Optimization Problems 
 

     Many real-world optimization problems are solved 

subject to sets of constraints. The search space in COPs 

consists of two kinds of solutions: feasible and 

infeasible. Feasible points satisfy all the constraints, 

while infeasible points violate atleast one of them. 

Therefore the final solution of an optimization problem 

must satisfy all constraints. 

In this paper, the two algorithms PSO and DE handle 

the constraints using the concept of penalty functions. 

In the penalty function approach, the constrained 

problem is transformed into an unconstrained 

optimization algorithm by penalizing the constraints 

and building a single objective function, which is 

minimized using an unconstrained optimization 

algorithm. That is, 
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with α a positive constant, representing the power of 

the penalty. The inequality constraints are considered 

as g(x) and h(x) represents the equality constraints. ng 

and nh denotes the number inequality and equality 

constraints respectively. λ is the constraint penalty 

coefficient. 

 

5. Economic Optimization of a Kraft 

Pulping for Pulp and Paper Industry 
 

5.1. Mathematical Model of the Hypothetical 

Kraft Pulping System 
 

The Kraft pulping [12] and recovery cycle 

operations comprise a reasonably isolated, yet 

complex, subsystem of an integrated papermaking 

process. Figure 1 [12] shows the various subsystems 

involved in the process of paper making. It is evident 

from the figure that Pulping and recovery cycle 

operations form the center of integrated paper making 

process. The given hypothetical system consists of the 

interrelated digester and recovery cycle operations for a 



Kraft mill producing, under certain realistic conditions, 

a fixed daily amount of unbleached spruce pulp. Also 

there are certain typical revenues and variable costs, 

and a number of realistic constraints. For more details 

please refer to [12]. 

 

 
Figure 1 Integrated Paper Making Process 

 

The mathematical model is given as [13]: 
 

Minimize   
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     There are five independently adjustable variables, 

and they are defined as follows:  

x1 = total load of inorganic chemical as Na2O in white  

liquor before losses 

x2 = volume of white liquor to digesters 

x3 = volume of black liquor to digesters 

x4 = rate of fresh wash water to washers 

x5 = time between cooks at each digester 

 

5.2. Simulation Results 
 

     The initial population for both the algorithms is 

taken as number of particles in the swarm (swarm size) 

is taken as 30. A total of 30 runs were performed and 

best result throughout the run was recorded.  

 

Table 1 Simulation Results 

Item PSO DE 
Results in 

[13] 

x1 705.170955 705.180325 705.06  

X2 68.6 68.6 68.6 

x3 102.899995 102.899995 102.900 

x4 282.324854 282.324033 282.341 

x5 37.583506 37.571403 35.627 

f (x) -1.905168 -1.905134 -1.90500 

Run time 

(sec) 
0.63 1.23 --- 

Genera- 

tion 
504 1763 --- 

 

Table 1 shows the experimental results. Figure 2 gives 

the convergence curves of PSO and DE. For the 

present study, the algorithms are coded in Turbo C++ 

and executed on a P IV. 

 

 
Figure 2 Convergence curves of PSO and DE 

 

6. Conclusion 
 

     This paper presents an industrial application of two 

popular population based search algorithms namely 

PSO and DE, by taking a classical example of 

optimization of Kraft pulping system. The 

mathematical model of the problem consists of five 

unknown variables and thirty eight constraints.  

     The solutions obtained by PSO and DE are more or 

less similar to the given solution (up to the third place 

of decimal), but since this is a real life optimization 

problem, the difference of even a small fraction may 

make a big difference in the industry. Moreover the 

main advantage of these algorithms is that they were 

able to solve the algorithms in very small time. PSO 

took only 0.63 seconds and 504 generations to solve 

the problem, where as DE took 1.23 seconds and 1763 

generations to do the same. Thus it may be concluded 

that PSO and DE can be used for solving large scale 

industrial optimization problems. However, the PSO 

and DE models taken for this paper are relatively 

simple models and more advanced versions of both the 

algorithms are now available. In future we shall be 

using more sophisticated versions of PSO and DE for 

solving the large scale optimization problems related to 

industries. We shall also be using other stochastic 

optimization techniques for solving the problem 

analyzed in this paper. 
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