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Abstract 
Some researchers have illustrated how individual 

and groups of bacteria forage for nutrients and to 

model it as a distributed optimization process, which is 

called the Bacterial Foraging Optimization (BFOA). 

One of the major driving forces of BFOA is the 

chemotactic movement of a virtual bacterium, which 

models a trial solution of the optimization problem. In 

this article, we analyze the chemotactic step of a one 

dimensional BFOA in the light of the classical 

Gradient Descent Algorithm (GDA). Our analysis 

points out that chemotaxis employed in BFOA may 

result in sustained oscillation, especially for a flat 

fitness landscape, when a bacterium cell is very near to 

the optima. To accelerate the convergence speed near 

optima we have made the chemotactic step size C 

adaptive. Computer simulations over several 

numerical benchmarks indicate that BFOA with the 

new chemotactic operation shows better convergence 

behavior as compared to the classical BFOA. 
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1. Introduction 
 

A foraging organism takes necessary action to 

maximize the energy utilized per unit time spent for 

foraging, considering all the constraints presented by 

its own physiology such as sensing and cognitive 

capabilities as well as the environment. BFOA has been 

successfully applied to real world problems like 

optimal controller design [1, 2, 3], harmonic estimation 

[4], transmission loss reduction [5], and machine 

learning [6]. A major step in the BFOA is the simulated 

chemotactic movement. Basically, chemotaxis is a 

foraging strategy that implements a type of local 

optimization where the bacteria try to climb up the 

nutrient concentration, avoid noxious substance and 

search for ways out of neutral media. This step has 

much resemblance with biased random walk model. 

Mishra, in [4], proposed a Takagy-Sugeno fuzzy 

inference scheme for selecting the optimal chemotactic 

step size in BFOA. In this article we have provided a 

simple mathematical analysis of the computational 

chemotaxis in the framework of the classical gradient 

descent search [7, 8] algorithm. We have analytically 

shown that a chemotactic step height varying as the 

function of the current fitness value leads to better 

convergence especially on the flatter region of the 

fitness landscape. The rest of the paper is organized as 

follows. In Section 2 we outline the classical BFOA 

and provide the mathematical analysis of the 

chemotactic movement of a one-dimensional bacterium 

and propose the adaptive chemotaxis for BFOA. 

Section 3 provides detailed comparison between the 

classical and the newly developed chemotaxis operator 

on a test-suit of several benchmarks. Finally the paper 

is concluded in Section 4.  

 

2. Bacterial Foraging Algorithm 
 

    In BFOA the coordinates of a bacterium represent an 

individual solution to the optimization problem. Such a 

set of trial solution converges towards global optima 

following a foraging group dynamics of the bacteria 

population. Each bacterium first undergoes a 

chemotactic movement as long as it goes in the 

direction of positive nutrient gradient (i.e., decreasing 

fitness). After a certain number of complete swims the 

best half of the population undergoes reproduction 

eliminating the rest of the population. In order to 

escape local optima an elimination-dispersal event is 

carried out where some bacteria are liquidated at 

random with a very small probability while the new 

replacements are randomly initialized over the search 

space. 

2.1. Analysis of the Computational Chemotaxis 

Let us consider a single bacterium cell that undergoes 

chemotactic steps according to (1) over a one 

dimensional objective function. The bacterium lives in 



continuous time and at the t-th instant its position is 

given by )(tθ . Below we list a few assumptions for the 

sake of gaining mathematical insight.  

i) The objective function J(θ) is continuous and 

differentiable at all points in the search space. 

ii) The chemotactic step size is not very large. 

iii) The analysis applies to the regions of the fitness 

landscape where gradients of the function are small 

i.e., near to the optima. 

According to assumption (iii), analysis is restricted 

within the region alike to that of the shaded region, as 

shown in Figure1. In Figure 1, the green arrow 

represents velocity of the bacterium and the blue arrow 

shows the gradient vector. It is to be noted that velocity 

vector does not necessarily coincide with the gradient 

vector. Initially, the bacterium was at point P and it 

moves to point Q.  Here, the vector PQ shows the 

direction of velocity of the bacterium.  

 
Figure 1. A continuous, one-dimensional fitness 

landscape for BFOA. 

2.2. Analytical Treatment 

Let, at time t  position of an individual bacterium be θ  

and value of objective function (to be minimized) 

be )(θJ . Also assume that, after an infinitesimal time 

interval t∆ , its position changes by an amount θ∆ . 

Then the new value of the objective function 

becomes )( θθ ∆+J . According to the chemotactic step 

used in BFOA, the bacteria changes its position only if 

the modified objective function value is less than the 

previous one i.e. )(θJ > )( θθ ∆+J  i.e. )(θJ -

)( θθ ∆+J  is positive. The decision-making (i.e. 

whether to take a step or not) activity of bacteria can be 

modeled by unit step function as, 

1))()(( =∆+− θθθ JJu , if 0)()( >∆+− θθθ JJ  

                                  ,0=      otherwise 

  Thus, ∆∆+−=∆ .)).()(( CJJu θθθθ                     (1)  

Where, C indicates the chemotactic step height and  

=∆  Direction of tumble (Here it can assume only two 

values 1 or -1 with uniform probabilities). 
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and then from(3), 
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Where, == )(' θJG  gradient of the objective function 

at θ.  Since the unit step function )(xu has a jump 

discontinuity at 0=x , to simplify the analysis further, 

we replace )(xu with the continuous logistic function 

)(xφ , where 
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2.3. Error Estimation and Analysis Limitations 

Due to the approximation of the unit step function, 

small error has been introduced in the analysis. Again 

we have simplified the function for some special cases 

(assumptions (ii) and (iii)). Here, magnitude of 

maximum possible value of error in estimation of 
dt

dθ  is 

equal to |
2

∆C |=
2

C . 1|| =∆Q .We have assumed )(xu is 

approximately equal to
kxe−+1

1
, with k=10.  For this 

value of k, )(xφ fairly approximates ).(xu Hence from 

(5), 
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According to assumptions  (ii) and (iii), if C and G are 

very small and k ~ 10, we may have | |bkGV <<1. In 

that case, we neglect higher order terms in the 

expansion of bkgv
e and have b

kgv
kGVe b +≈ 1 . 

Substituting it in (7) we obtain,  
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If x is small, we may again approximate the logistic 

function with the following equation of a straight line 

as:  )(xu =
2

1

4
+x

k
                                                    (10)          

These simplifications are already done in (7) to (9) in 

that case GVx b= . The straight line, which approximates 

logistic function as shown in Figure 2, intersects graph 

of the logistic function at two points A and B. But 

when |x |> OA or| x| > OC, the error in the decision of 

our analysis gradually increases. So we must restrict 

our analysis within the region AC i.e. magnitude of 

bGV  has certain limits. As shown in Figure 2, x must 

lie between A and C. Otherwise our analysis becomes 

erroneous. After imposing constraints on (10) we get, 
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Substituting, x by bGV  in (11) we get,  
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Figure 2. The region of error due to  approximation of 

the unit step with the logistic functions 

From (9) and (12) we get,  
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Incorporating inequality (11) in above we get,  
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Now, let us assume within our domain of analysis 

max|| G be the maximum possible magnitude of 

gradient. )51(
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max|||| GG = . Our analysis is valid if chemotactic step 
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value of chemotactic step size 
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C . If max|| G  is large, the 

maximum allowable step size almost vanishes making 

our analysis invalid for moderately small values of step 

size. From this consideration we should also restrict 
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domain of analysis within the region with moderate 

value of gradient.  

2.4. Chemotaxis and the Classical Gradient 

Decent Search 

From (9) we get,   
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where 
'α is 

8

2
kC− and β  is

2

∆C . The classical gradient 

descent search algorithm is given by the following 

dynamics in single dimension: 

          

                                                                          (16) 

where α  is the learning rate. Similarity between 

equation (15) and (16) suggests that chemotaxis is a 

modified CGDA where 'α , which is a function of 

chemotactic step size, can be identified as the learning 

rate of chemotaxis. As discussed in Section 2.3, the 

magnitude of gradient should be small within the 

region of our analysis. So we choose point P in the one 

dimensional fitness landscape shown in Figure 3 as the 

operating point for our analysis. For chemotaxis of 

BFOA, when G becomes very small, the gradient 

descent term G'α of (15) becomes ineffective. But the 

random search term 
2

∆C  plays an important role in this 

context. From  (15), considering, 0→G , 

0
2

≠∆= C
dt

dθ . So there is a convergence towards actual 

minima as shown in Figure 4. The random search term 

2
∆C  in the RHS of (8) provides an improvement to the 

classical gradient descent search. When gradient 

becomes very small, the random term dominates over   

gradient decent term and bacteria changes its position. 

But random search term may lead to change in position 

in the direction of increasing cost function value. If it 

happens then again magnitude of gradient increases and 

dominates the random search term.  

 
Figure 3.  A sample fitness landscape for studying the 

computational chemotaxis 

 
Figure 4. Fitness landscape for an even objective 

function 

 

Figure 5. Fitness landscape for the function 2)( θθ =J  

2.5. Oscillation Problem: Need for Adaptive 

Chemotaxis 

If magnitude of gradient decreases consistently, near 

the optima or very close to the optima G
'α− of (15) 

becomes comparable to β . Then gradually β becomes 

dominant.  

When
2
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Let us assume the bacterium has reached close to the 

optimum. But as we have derived ,
2

||
C

dt

d
=

θ the 

bacterium does not stop taking chemotactic steps .It 

oscillates about the optima.  This crisis can be 

remedied if step size C is made adaptive according to 

the following equation, 
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where λ is a positive constant. Choice of a suitable 

value for λ has been discussed in the next subsection. 

Here we have assumed that the global optimum of the 

cost function is 0. Thus from (16) we see, if 0)( →θJ , 

then 0→C . So there would be no oscillation if the 

bacterium reaches optima because random search term 

vanishes as C 0→ .  The functional form given in 

equation (16) causes C to vanish nears the optima. 



Besides, it plays another important role described 

below. From (16), we have,  

When )(θJ is large 0
|)(|

→
θ

λ

J
 and consequently, 

1→C . This has an important physical significance. A 

bacterium in the vicinity of noxious substance (high 

value of the cost function) takes larger chemotactic 

steps .On the other hand, bacterium near high nutrient 

concentration (i.e. low value of cost function) is much 

reluctant to take chemotactic steps.  

2.6 Adaptive Chemotaxis for Avoiding Lock-in 

State 

Let us consider an even function )(θJ (as shown in 

Figure 5), which has its minima at 0=θ and its 

minimum value is also equals to 0. Let us also assume 

the function is increasing in the interval [0,φ ]. (e. g. 

2)( θθ =J  is an even function where it is increasing in 

the interval [0, ∞ ). So in this case ∞→φ . A special 

case of stagnation may occur within the region ( ),φφ−  

i.e. where the function is increasing. We here refer to 

this situation as lock in. The lock in condition arises 

when a bacterium has reached somewhat near to the 

optima of a function and then its further movements are 

not possible due to comparatively large step size. 

Consider a bacterium to be at M’ at the current time 

step, such that xOM =' and ( xON =' ) and ϕ<x . 

Let the chemotactic step height taken by the bacterium 

be C. Now if xC 2> the bacterium may move on to 

points like P or Q on the fitness landscape 

(corresponding to 1/1 −+=∆ and such that 

M’P’=M’Q’=C). As can be observed from figure 5, in 

both the cases value of the objective function increases 

than the previous value (PP’ > MM’ and QQ’ > MM’). 

Hence according to the BFOA directives, the bacterium 

cannot jump to either of the locations P or Q. In, the 

limiting case, for xC 2= , the bacterium will oscillate 

between points M and N (as in this case N and Q 

coincide).  

The same events occur if initially the bacterium is at N 

i.e. if its present coordinate 0<x . Hence taking into 

account both the cases, the condition for lock-in may 

be put forward as ||2 xC ≥ where x indicates the 

present coordinate of the bacterium. 

 

Example 1: 

Suppose we have to minimize a one-dimensional 

function 2)( θθ =J  (Figure 5). Let in Figure 6, 

|PO|=|QO|= θ . We also assume that step size is C and 

the bacterium is currently at the position θθ =  i.e. it is 

at Q.  Now in classical chemotaxis, three cases may 

arise as described below:  

Case I: Let step-size θ2=C . Then, for 1−=∆ , the 

bacterium should move to P. But as in this case its 

objective function value remains same, it does not 

come to P, but stays at Q [as 2)()( θθθ =−= JJ ]. As 

1=∆ tries to shift the bacterium to the right (where the 

objective function value increases again) it again stays 

at Q. Hence the bacterium gets trapped at Q. 

Case II: Let θ2>C . In that case, bacterium remains 

immobile for both values of .∆ . Here step size is 

constant and greater than ||2 θ . If the bacterium moves 

in any one of the two directions, value of the objective 

function increases. So the bacterium is trapped. 

Case III: Let, θ2<C . In this case, bacterium will 

move to some point in the left of origin. But, C is fixed 

(say, 0.5). So, after certain iterations any one of CASE 

II and I must arise.  

Now consider the situation when the step-size has been 

made adaptive according to (16). Then we have   
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Hence, for all values ofθ , if |)(| θλ f> >⇒ λ 161 , 

then no trapping or sustained oscillations of the 

bacterium cell will   arise near the global optimum. In 

this case the bacterium cell will follow a trajectory as 

depicted in Figure 6.  

 
Figure 6. Convergence towards the global optima for 

adaptive step size in chemotaxis 

θ 



Now, suppose we take, =λ 0.0630 (>
16

1 ). Let, θ = 0.1 

initially. Then in Table 1, we present how the value of 

θ changes over subsequent chemotactic steps, when the 

step-size has been made adaptive.  

Table 1. Variation of bacterium position θ with 

chemotactic steps for adaptive step size C 

 

3. Experimental Results 
 

We present the results of Adaptive BFOA (ABFOA) 

and the classical BFOA using a test-suite of six well-

known benchmark functions - Sphere function f1, 

Rosenbrock f2, Rastrigin f3, Griewank f4, Ackley f5 and 

Shekel’s Foxholes function f6 [9]. All the benchmark 

functions except f5 have their global minima at the 

origin or very near to the origin. For f5 the global 

minimum is at (-31.95,-31.95) and its value is 0.998. 

This function has only 2 dimensions. An asymmetrical 

initialization procedure has been used here following 

the work reported in [10]. BFOA and ABFOA used 

classical parameter setup as prescribed in [1], except 

the difference that the chemotactic step size in ABFOA 

has been made adaptive according to (16). After 

performing a series of hand-tuning experiments, we 

found that keeping λ = 4000, provides considerably 

good result for nearly all benchmark functions dealt 

here. The chemotactic step-size C(i) was kept at 0.1 in 

the classical BFOA. Rest of the parameter settings that 

were kept same for both the algorithms are as follows: 

wattract, = 0.2, wrepellant  = 10, hrepellant  = 0.1, S = 50, Nc = 

100, Ns = 4,  Ned = 1 and ped = 0.25. The comparative 

study presented here, focuses on the following 

performance metrics: (a) the quality of the final 

solution (b) the convergence speed (measured in terms 

of the number of fitness function evaluations (FE’s)) 

(c) the frequency of hitting the optima. Twenty 

independent runs of each of the algorithms were carried 

out and the average and the standard deviation of the 

best-of-run values were recorded.  

 

Table 2. Average and the standard deviation of the 

best-of-run solution 

Different maximum number of FE’s was used 

according to the complexity of the problem. Table 2 

compares the algorithms on the quality of the optimum 

solution. The mean and the standard deviation (within 

parentheses) of the best-of-run values for 25 

independent runs of each of the four algorithms are 

presented. Each algorithm was run up to a 

predetermined maximum number of Function 

Evaluations –FE’s (depending upon the complexity of 

the problem). The best solution in each case has been 

shown in bold. Table 3 shows results of unpaired t-tests 

between the competing algorithms in each case 

(standard error of difference of the two means, 95% 

confidence interval of this difference, the t value, and 

the two-tailed P value).  For all cases in Table 3, 

sample size = 25 and degrees of freedom = 48. 

Chemotactic 

step 
           θ  Step-size C  

1 0.1000 0.1369 

2 -0.0370 0.0213 

3 -0.0160 0.0040 

4 -0.0120 0.0020 

5 -0.010 0.0015 

6 -0.0097 0.0017 

7 -0.0082 0.0011 

8 -0.0063 0.0006 

9 -0.0057 0.0005 

10 -0.0052 0.0004 

Mean best value (standard deviation) 

 

 

D 

 

 

No. of 

FE\s 
               BFOA ABFOA 

15 1×105 0.001 (0.00) 0.001(0.00) 

30 5×105 0.084 (0.0025) 0.045 (0.0061) 

45 1×106 0.673 (0.1126) 0.435 (0.0928) 

f1 

 
60 5×106 1.728 (0.2125) 0.827 (0.1472) 

15 1×105 
26.705 

(11623) 
11.561 (2.355) 

30 5×105 
58.216 

(14.3254) 
40.212 (6.5465) 

45 1×106 
96.873 

(26.136) 
54.543 (10.8824) 

f2 

 

60 5×106 
154.705  

(40.1632) 
91.239 (12.7285) 

15 1×105 
6.9285 

(2.0952) 
1.0044 (0.6126) 

30 5×105 
17.0388 

(4.8421) 
3.3316 (0.5454) 

45 1×106 
30.9925 

(7.8329) 
6.4527 (1.3274) 

f3 

 

60 5×106 
33.8234 

(9.6231) 
8.3343 (0.2917) 

15 1×105 
0.2812 

(0.0216) 
0.0321 (0.02264) 

30 5×105 
0.3729 

(0.0346) 
0.2414 (0.5107) 

45 1×106 
0.6351 

(0.0522) 
0.3069 (0.4526) 

 

f4 

60 5×106 
0.8324 

(0.0764) 
0.5638 (0.3452) 

15 1×105 
0.9332 

(0.0287) 
0.7613 (0.0542) 

30 5×105 
2.3243 

(1.8833) 
0.8038 (0.5512) 

45 1×106 
3.4564 

(3.4394) 
1.3432 (0.1945) 

f5 

60 5×106 
4.3247 

(1.5613) 
2.4224 (0.4551) 

f6 

 
2 1×105 

1.056433 

(0.01217) 

0.999832 

(0.00167) 



Table 3. Results of unpaired t-tests on the data of 

Table 2. 

It is interesting to see from Tables 2 and 3 that the 

proposed ABFOA performed very well when compared 

to the classical BFOA in a statistically significant way.  

Table 4 shows, for all test functions and all algorithms, 

the number of runs (out of 25) that managed to find the 

optimum solution within a given tolerance or cutoff 

value. In Table 4, we also report the mean number of 

function evaluations (FEs) and standard deviations 

(within parentheses) required by each algorithm to 

converge within the prescribed cut-off value. In each 

case, the mean is calculated over the corresponding 

number of runs that managed to converge within the 

cut-off value. 

The cut-off value was determined from Table 4 as an 

objective function value that is slightly higher than the 

worst value found by any of the competitor algorithms. 

In Figure 7, we have graphically presented the rate of 

convergence of the contestant methods for all the 

functions (in 60 dimensions). Tables 2 to 4 and Figure 

7 clearly indicates that the ABFOA can yield better 

quality solutions for all the benchmark problems 

considered here, consuming less computational time as 

compared to the classical BFOA. Since both the 

contestant algorithms start from the same intial 

population, both of them use common parametetric 

setup, the difference in their performance must have 

resulted from the use of adaptive chemotactic step 

height in ABFOA. This observation also agrees with 

the simplified analytical treatment provided in Section 

2, which points out that the adaptive chemotactic 

operator has an edge over the classical chemotaxis, 

especially in context to the convergence behavior of the 

algorithm, very near to the optima. 

 

Table  4.  No. of successful runs, mean no. of FE’s and 

standard deviation (in paranthesis) required to 

converge. 

 

 

Fn, 

Dim 

Std. 

Err 

t 95% Conf. Intvl Two-

tailed P 

Significance 

f1, 30 0.001 29.579 0.036349 to 0.041651 < 

0.0001 
Extremely 

significant 

f1, 45 0.029 8.1555 0.179324 to 0.296676 < 

0.0001 
Extremely 

significant 

f1, 60 0.052 17.427 0.797049 to 1.004951 < 

0.0001 
Extremely 

significant 

f2, 15 0.639 23.685 13.8584338 to 

16.4295662 

< 

0.0001 
Extremely 

significant 

f2, 30 3.150 5.7154 11.670356 to 24.337644 < 

0.0001 
Extremely 

significant 

f2, 45 3.498 4.3658 -22.30540 to  

-8.23860 

< 

0.0001 
Extremely 

significant 

f2, 60 5.153 8.7855 -55.63537 to  

-34.91263 

< 

0.0001 
Extremely 

significant 

f3, 15 0.064 16.690 -1.2011367 to  

-0.9428633 

<0.0001 Extremely 

Significant 

f3, 30 0.192 1.7899 -0.04242 to 0.73042 0.0798 Not quite 

Significant 

f3, 45 1.513 14.468 -24.9330 to -18.8487 < 

0.0001 
Extremely 

significant 

f3, 60 1.513 2.5724 -6.932087 to   

-0.849713 

0.0132 Significant 

f4, 15 0.006 3.0849 0.0062682 to 0.0297318 0.0034 Very 

Significant 

f4, 30 0.022 2.5838 0.012333 to 0.098867 0.0129 Significant 

f4, 45 0.023 2.6417 -0.108662 to   

-0.014738 

0.0111 Significant 

f4, 60 0.020 17.626 -0.3972779 to 

  -0.3159221 

<0.0001 Extremely 

Significant 

f5, 15 0.001 161.74 -0.0881827 to 

 -0.086017 

<0.0001 Extremely 

Significant 

f5, 30 0.011 13.205 -0.1671923 to 

  -0.1230077 

<0.0001 Extremely 

Significant 

f5, 45 0.689 16.130 9.727915 to 12.498485 <0.0001 Extremely 

Significant 

f5, 60 0.136 2.1524 -0.565934 to  

 -0.019266 

0.0364 Significant 

f6, 2 0.002 23.038 0.05166125 to 

0.06154075 

<0.0001 Extremely 

Significant 

No. of runs converging to the cut-off, Mean No. 

of FEs Required and (Std Deviation) 

 

 

Func 

 

 

Dim 

 

 

 

Threshold 

Value 
BFOA ABFOA 

15 0.001 25, 48109.20 (41.873) 25, 31465.48  

(19.492) 

30 0.090 50, 77372.54 (343.547) 50, 72093.12  

(102.763) 

45 0.700 50, 119476.80 (3316.982) 50, 974005.08 

 (920.276) 

 

 

f1 

 

60 1.800 50, 212381.64 (331.282) 50, 15136.40 

 (45.932) 

15 30.00 31, 95920.88 (344.390) 43, 92004.28 

 (142.009) 

30 60.00 25, 319432.20 (317.912) 34, 210202.96  

(321.87) 

45 100.00 15, 911235.80 (1012.282) 28, 818932.12  

(314.928) 

 

 

 

f2 

60 160.00 12, 4146674.50 (1291.203) 22, 293093.40  

(346.561) 

15 8.00 50, 42298.44 (131.291) 50, 39231.60 

 (124.397) 

30 20.00 36, 419827.40 (63.292) 43, 350635.80  

(98.290) 

45 32.00 23, 242938.97 (823.208) 40, 121093.50 

(98.403) 

 

 

 

f3 

60 50.00 10, 7142938.40 (8323.208) 41, 2368039.77 

 (1462.659) 

15 0.300 34, 92827.85 (223.839) 43, 70938.79  

(116.349) 

30 0.500 28, 432094.25 (52.491) 28, 350948.75  

(56.872) 

45 0.700 10, 925367.30 (134.268) 13, 840291.34  

(142.903) 

 

 

 

f4 

60 1.000 14, 4328701.56 (23.221) 10, 3425949.10 

 (55.715) 

15 1.000 50, 4573.64 (3.492) 50, 7745.34  

(13.569) 

30 5.000 50, 8768.44 (23.383) 50, 15049.30 

 (82.298) 

45 15.000 45, 49089.66 (324.482) 50, 127940.38 

 (232.98) 

 

 

f5 

 

60 20.000 31, 460729.03  

(171.265) 

50, 3119847.26  

(873.389) 

f6 25 1.10 50, 44372.34 (67.482) 50, 28923.72 

 (9.409) 



 

 

 

 

 

 

 

 

 

   

(a) Sphere                        (b) Rosenbrock 

 

 

 

 

 

 

 

 

 

(c) Rasrigin                         (d) Griewank 

 

 

                   

 

 

 

 

 

             

(e) Ackley                            (f) Shekel’s Foxholes 

Figure 7. Progress to the optimum solution (all plots 

are for dimension = 60, except Shekel’s foxhole that is 

2-dimensional) 

 

4. Conclusions 
 

This paper presented a simple mathematical analysis of 

the computational chemotaxis, used in the BFOA. It 

also proposed a simple scheme to adapt the 

chemotactic step-size in BFOA with a view to 

improving its convergence behavior without imposing 

additional requirements in terms of the no. of FEs. It 

has analytically been shown that the proposed 

adaptation scheme can avoid the oscillation around the 

optima or the stagnation near optima for a one 

dimensional bacterium cell. The classical BFOA was 

compared with the adaptive BFOA over a test-bed of 

six well-known numerical benchmarks. Following 

performance metrics were used: (a) solution quality, (b) 

speed of convergence, and (c) frequency of hitting the 

optimum. The adaptive BFOA was shown to 

outperform its classical counterpart in a statistically 

meaningful way for all of the tested problems. The 

future research may focus on extending the analysis 

presented here, to a group of bacteria working on a 

multi-dimensional fitness landscape and also include 

effect of the cell-to-cell attractor repellant profile in the 

same. A mathematical analysis of other steps of the 

BFOA like reproduction, elimination-dispersal etc may 

provide valuable guidelines for choosing/tuning the 

parameters of the algorithm. 
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