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Abstract 
 
Two new variants of Particle Swarm Optimization (PSO) 
called AMPSO1 and AMPSO2 are proposed for global 
optimization problems. Both the algorithms use adaptive 
mutation using Beta distribution. AMPSO1 mutates the 
personal best position of the swarm and AMPSO2, 
mutates the global best swarm position. The performance 
of proposed algorithms is evaluated on twelve 
unconstrained test problems and three real life 
constrained problems taken from the field of Electrical 
Engineering. The numerical results show the competence 
of the proposed algorithms with respect some other 
contemporary techniques.  
 
1. Introduction 
 
PSO [1] is comparatively a newer addition to a class of 
stochastic algorithms that has been successfully used to 
solve complex test and real life problems. However the 
point of criticism is that they have not demonstrated 
themselves as efficient as promised. For example, in case 
of PSO although the rate of convergence is good due to 
fast information flow among the solution vectors, its 
diversity decreases very quickly in the successive 
iterations resulting in a suboptimal solution [2]. At the 
same time, in comparison to PSO, Genetic Algorithms 
(GA) and Evolutionary Programming (EP) have slower 
convergence rate. In order to improve the diversity of 
PSO, without compromising with the solution quality we 
propose two new variants of PSO using Self adaptive 
Mutation Technique (used in Evolutionary Programming 
(EP)) [3].  
     In the modified versions AMPSO1 and AMPSO2, 
instead of mutating the entire population of potential 
solutions (as in EP), we mutated only the personal and 
global best particles of the population. The remaining of 
the paper is organized as follows. Section 2, describes the 
PSO algorithm, Section 3 gives the proposed algorithm. 
Section 4 gives the experimental settings and numerical 
results. The paper finally concludes with Section 5. 
 
2. Particle Swarm Optimization 
 

For a D-dimensional search space the position of the ith 
particle is represented as Xi = (xi1, xi2, …, xiD). Each 
particle maintains a memory of its previous best position 
Pbesti = (pi1, pi2… piD). The best one among all the particles 
in the population is represented as Pgbest = (pg1, pg2… pgD). 
The velocity of each particle is represented as Vi = (vi1, 
vi2, … viD). In each iteration, the P vector of the particle 
with best fitness in the local neighborhood, designated g, 
and the P vector of the current particle are combined to 
adjust the velocity along each dimension and a new 
position of the particle is determined using that velocity. 
Equations of velocity vector and position vector given by: 
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ididid vxx +=                                                                                        (2) 
First part of equation (1) represents the inertia of the 
previous velocity, second part is the cognition part, third 
part represents the cooperation among particles and is 
called social component. Acceleration constants c1, c2 and 
inertia weight w are the predefined by the user.r1, r2 are 
the uniformly generated random numbers between 0 and 
1.  
 
3. Adaptive Mutation Based PSO  
 
     The proposed versions AMPSO1 and AMPSO2differ 
from each other in the sense that in AMPSO1, personal 
best Pbest position of the swarm particles is mutated and 
in AMPSO2, the global best (gbest) position of the 
particle is mutated. The particles are mutated at the end of 
each iteration according to the following rule: 
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where, τσσ exp(*ijij =′ τ ′+)1,0(N ))1,0(jN , N(0, 1) 
denotes a normally distributed random number with mean 
zero and standard deviation one. Nj (0, 1) indicates that a 
different random number is generated for each value of j. 

τ and τ′ are set as n2/1  and n2/1 respectively [4]. 
Betarandj () is a random number generated by beta 
distribution with parameters less than 1. 
The computational steps of proposed algorithm are given 
below. 

1. Initialize the swarm with uniformly distributed 
random numbers. Each particle is taken as a pair 



of real-valued vectors, ),( iix σ .The ix ’s give the 
ith particle of the swarm and iσ ’s the associated 
strategy parameters. 

2. Update velocity and position vector using 
equation (1) and (2). 

3. Calculate the fitness value, fitnessi. 
4. If (fitnessi < Pbesti) then set Pbesti = fitnessi. If 

(Pbesti < gbest) then set gbest = Pbesti. 
5. If (U (0, 1) < 1/d) then  

              Apply mutation to Pbest using equation (3). 
                    Evaluate the fitness value, fitnessi. 

 If (fitnessi < Pbesti) then set Pbesti = fitnessi.    
 If (Pbesti < gbest) then set gbest = Pbesti. 
Here U (0, 1) is the uniformly distributed 
random number in the interval (0, 1). d is the 
dimension. 

6. Repeat the loop until stopping criteria is reached. 
The algorithmic steps of PSO with gbest mutation is the 
same as the above, just Beta distribution mutating the 
gbest instead of Pbest. 
 
4. Experimental Settings  
 
Experimental settings for BPSO, AMPSO1, AMPSO2 
and EP 

 BPSO AMPSO I and II EP 
Population size is taken 30 for all algorithms 
w (linearly 
decreasing) 

(0.9-0.4) (0.9-0.4) NA 

c1, c2 1.8 1.8 NA 
Mutation 
Probability 

NA Beta 
Distribution 

Gaussian 
Distribution 

Computer 
settings 

All experiments are conducted on a PIV PC 
using DEV C++ 

Maximum iterations for all algorithms taken as 3000 
A total of 30 runs for each experimental setting were 
conducted and the average fitness of the best solutions 
throughout the run was recorded.  

4.1. Benchmark problems and numerical results 

     The proposed versions are tested on 12 classical 
benchmark problems (unconstrained) given in Table 1 [5]. 
Functions f1, f3, f5, f6, f7, f8 are highly multimodal; f2, 
f4, f10, f11 are unimodal; ‘f2’ is  unimodal function but 
when the dimensions are increased the convergence rate 
becomes slow; f12 is a step function which is 
discontinuous and has one minimum;f9 is a nosiy 
function. All the problems are scalable in order to check 
the efficiency of the proposed algorithms for higher 
dimensions. Since AMPSO contains the features of both 

PSO and EP we compared its performance with basic 
PSO (BPSO), EP and some refined versions of PSO and 
EP. In Table 2, we show comparison of AMPSO1 and 
AMPSO2 with BPSO and EP. In Table 3, we compare the 
performance of proposed algorithms with modified 
versions of PSO having Gaussian [6] and Cauchy 
mutation [7]. Table 4, gives the comparison with EP 
having adaptive Gaussian and Cauchy mutations [8]. 
Numerical results given in Table 2, show that AMPSO2 
gives the best values in terms of average fitness function 
value for all the test functions except f5, where EP gave a 
slightly better performance. Here we would like to 
mention that results given in Table 2 are strictly with 
respect to the experimental settings given in Section 4.  
    Table 3, gives only four test problems because we were 
able to locate only four problems that have been solved by 
the other mentioned versions of PSO. Here also it is 
evident from the table that AMPSO2 gave best 
performance for all the 4 test problems. Table 4, gives the 
comparison of AMPSO versions with two versions of EP 
namely FEP and CEP. FEP uses self adaptive Cauchy 
mutation and CEP is the classical EP using self adaptive 
Gaussian mutation. The difference in the results of EP 
given in Table 2 and CEP given in Table 5 is because of 
different experimental settings (please see [8] for 
experimental settings of CEP and FEP). Despite different 
experimental settings, it can be observed from Table 5, 
that AMPSO2 gave a superior performance in 7 out of 12 
problems whereas FEP gave better results in 4 out of 12 
test problems. In case of f12, except for CEP, all the 
algorithms converged to 0. Figures 1 - 4 show the 
performance of some selected benchmark problems. 

4.2. Real life problems and numerical results 

     Three constrained optimization problems common in 
the field of electrical engineering are taken: Dynamic 
Power and Static power scheduling problem [9] and 
electric network optimization problem [10]. Constraints 
are handled by Penalty method [4]. For the comparison of 
real life problems, we have only considered only BPSO 
and EP besides AMPSO1 and AMPSO2, because as 
mentioned earlier the other algorithms cited in this paper 
have not been used to solve the same set of constrained 
real life problems. From the numerical results no 
algorithm can be called a clear winner. For the first 
problem, AMPSO2 gave the best performance followed 
AMPSO1. In the second problem, AMPSO1 gave the best 
results; in second place we got AMPSO2. However, in the 
third problem EP emerged as a winner followed by 
AMPSO2 with a marginal difference which in turn was 
followed by AMPSO1 and finally by BPSO.  

 
 
 
 



Table 1. Numerical Benchmark Problems. All problems are of dimension 30 
Function Range Optimum 
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Figure 1. Performance for function f1.                   Figure 2. Performance for function f2 

         
 

Figure 3. Performance for function f3               Figure 4. Performance for function f5 



 
Table 2. Numerical results of proposed algorithms in comparison with BPSO and EP 

Funct BPSO AMPSO1 AMPSO2 EP 
f1 37.819 (7.455) 31.838 (6.004) 18.307 (2.658) 184.097 (20.483) 
f2 3.542e-16(4.26e-16) 2.320e-36 (4.573e-36) 4.343e-40 (7.930e-40) 25.257(5.714) 
f3 0.018(0.023) 1.626-19(9.812e-09) 8.673e-20(3.160e-20) 1.073(0.025) 
f4 81.273(41.218) 29.137(25.014) 24.171(16.361) 157.385(154.873) 
f5 -10652.33(663.174) -11937.801 (383.462) -12214.17(212.29) -12297.4(676.107) 
f6 -1.138 (0.005) -1.139 (0.024) -1.144 (0.010) -0.986(0.185) 
f7 0.020(0.052) 5.505e-13(1.757e-12) 5.505e-13(1.757e-12) 14.76(5.046) 
f8 1.02e-08(1.90e-08) 5.61e-17(1.046e-17) 3.187e-17(3.913e-13) 10.30(1.053) 
f9 0.508(0.2508) 0.4670(0.313) 0.416(0.220) 5.387(1.711) 
f10 5.357(3.204) 0.155(0.110) 0.147(0.131) 9.919(1.301) 
f11 2.06e-11(5.853e-12) 4.55e-16 (1.82e-15) 1.392e-17(3.438e-17) 32.894(4.478) 
f12 0.05(0.217) 0.000(0.000) 0.000 (0.000) 1.533 (2.276) 

 
Table 3. Numerical results of proposed algorithms in comparison with CPSO and GMPSO. 

Funct AMPSO1 AMPSO2 CPSO [7] GMPSO [6] 
f1 31.838(6.004) 18.307(2.658) 69.050(16.419) 26.266(3.258) 

f2 2.320e-36(4.573e-36) 4.343e-40(7.930e-40) 2.36e-26(1.5e-25) 2.65e-15(2.56e-14) 

f4 29.137(25.014) 24.171(16.361) 29.084(31.460) 27.932(26.115) 

f8 5.616e-17(1.046e-17) 3.187e-17(3.913e-13) 5.651(1.333) 6.75e-12(3.21e-12) 
 

Table 4. Numerical results of proposed algorithms in comparison with FEP and CEP 
Funct AMPSO1 AMPSO2 FEP[8] CEP[8] 

f1 31.838(6.004) 18.307(2.658) 4.6e-2(1.2e-2) 89.0(23.1) 
f2 2.32e-36(4.57e-36) 4.34e-40 (7.93e-40) 5.7e-4(1.3e-4) 2.2e-4(5.9e-4) 
f3 1.626e-19(9.812e-09) 8.673e-20 (3.160e-20) 1.6e-22.(2e-10) 8.6e-20.12 
f4 29.137(25.014) 24.171(16.361) 5.06(5.87) 6.17(13.61) 
f5 -11937.80(383.46) -12214.17(212.29) -12554.5(52.6) -7917.1(634.5) 
f6 -1.139 (0.024) -1.144(0.010) 1.6e-4(7.3e-5) 1.4(3.7) 
f7 5.505e-13(1.757e-12) 5.505e-13(1.75e-12) 9.2e-6(3.6e10) 1.76(2.4) 
f8 5.616e-17(1.046e-17) 3.187e-17(3.91e-13) 1.8e-2(2.1e-3) 9.2(2.8) 
f9 0.467(0.313) 0.4168(0.22) 7.6e-3(2.6e-3) 1.8e-2(6.4e-3) 
f10 0.155(0.110) 0.147(0.131) 0.3(0.5) 2.0(1.2) 
f11 4.55e-16(1.821e-15) 1.392e-17(3.438e-17) 8.1e-3(7.7e-4) 2.6e-3(1.7e-4) 
f12 0.000(0.000) 0.000(0.000) 0.000(0.000) 577.76(1125.7) 

 
 
 
 
 
 
 
 
 
 



Table 5. Numerical results of Real Life problems 
Dynamic Power Scheduling problem 

Algorithm Best Average Worst Std 
BPSO 666.6352 717.552687 802.85215 25.031686 
EP 685.444 705.118 736.237 13.7668 
AMPSO1 665.3734 698.83783 723.0659 20.174152 
AMPSO2 664.45585 700.761712 717.09795 16.833555 

Static Power Scheduling 
Algorithm Best Average Worst Std 
BPSO 5061.01219 5154.529748 5221.47662 42.762777 
EP 5078.47 5266.97 5432.6 55.9326 
AMPSO1 5051.31152 5135.814972 5195.84009 36.365148 
AMPSO2 5055.06909 5149.44626 5203.13869 35.75362 

Electric Network Optimization 
Algorithm Best Average Worst Std 
BPSO 8873.01753 9084.32555 9307.9852 141.867249 
EP 8860.69 8998.56 9115.98 106.282 
AMPSO1 8867.42125 9039.478666 9308.63886 130.941717 
AMPSO2 8866.28340 9031.81355 9294.83343 125.210766 

 
5. Conclusion 
 
Two new variants viz. AMPSO1 and AMPSO2 with self 
adaptive mutation probability are proposed. The novelty 
of the approach is the use of Beta distribution, which to 
the best of our knowledge, has not been used for self 
adaptive mutation. The numerical results show that the 
performance of Beta probability distribution is at par with 
Gaussian and Cauchy distributions and is in fact better in 
some of the cases under the given experimental settings. 
We would like to add that the performance comparison 
given in Table 3 and Table 4 are not very fair because of 
different experimental settings. However, we can say that 
under the experimental settings taken in this paper 
AMPSO2 gives good results for unconstrained test 
problems. For constrained real life problems the picture is 
not very clear and we are doing further investigations. In 
future we plan to compare different algorithms under 
similar parameter settings, in order to give a fair chance to 
every algorithm.  
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