
Particle Swarm Optimization Using Adaptive Mutation

Millie Pant1, Radha Thangaraj1 and Ajith Abraham2
1Department. of Paper Technology, IIT Roorkee, India

2Center of Excellence for Quantifiable Quality of Service,
Norwegian University of Science and Technology, Norway

millifpt@iitr.ernet.in, t.radha@ieee.org, ajith.abraham@ieee.org

Abstract

Two new variants of Particle Swarm Optimization (PSO)
called AMPSO1 and AMPSO2 are proposed for global
optimization problems. Both the algorithms use adaptive
mutation using Beta distribution. AMPSO1 mutates the
personal best position of the swarm and AMPSO2,
mutates the global best swarm position. The performance
of proposed algorithms is evaluated on twelve
unconstrained test problems and three real life
constrained problems taken from the field of Electrical
Engineering. The numerical results show the competence
of the proposed algorithms with respect some other
contemporary techniques.

1. Introduction

PSO [1] is comparatively a newer addition to a class of
stochastic algorithms that has been successfully used to
solve complex test and real life problems. However the
point of criticism is that they have not demonstrated
themselves as efficient as promised. For example, in case
of PSO although the rate of convergence is good due to
fast information flow among the solution vectors, its
diversity decreases very quickly in the successive
iterations resulting in a suboptimal solution [2]. At the
same time, in comparison to PSO, Genetic Algorithms
(GA) and Evolutionary Programming (EP) have slower
convergence rate. In order to improve the diversity of
PSO, without compromising with the solution quality we
propose two new variants of PSO using Self adaptive
Mutation Technique (used in Evolutionary Programming
(EP)) [3].
 In the modified versions AMPSO1 and AMPSO2,
instead of mutating the entire population of potential
solutions (as in EP), we mutated only the personal and
global best particles of the population. The remaining of
the paper is organized as follows. Section 2, describes the
PSO algorithm, Section 3 gives the proposed algorithm.
Section 4 gives the experimental settings and numerical
results. The paper finally concludes with Section 5.

2. Particle Swarm Optimization

For a D-dimensional search space the position of the ith
particle is represented as Xi = (xi1, xi2, …, xiD). Each
particle maintains a memory of its previous best position
Pbesti = (pi1, pi2… piD). The best one among all the particles
in the population is represented as Pgbest = (pg1, pg2… pgD).
The velocity of each particle is represented as Vi = (vi1,
vi2, … viD). In each iteration, the P vector of the particle
with best fitness in the local neighborhood, designated g,
and the P vector of the current particle are combined to
adjust the velocity along each dimension and a new
position of the particle is determined using that velocity.
Equations of velocity vector and position vector given by:

)()(2211 idgdidididid xprcxprcwvv −+−+= (1)

ididid vxx += (2)
First part of equation (1) represents the inertia of the
previous velocity, second part is the cognition part, third
part represents the cooperation among particles and is
called social component. Acceleration constants c1, c2 and
inertia weight w are the predefined by the user.r1, r2 are
the uniformly generated random numbers between 0 and
1.

3. Adaptive Mutation Based PSO

 The proposed versions AMPSO1 and AMPSO2differ
from each other in the sense that in AMPSO1, personal
best Pbest position of the swarm particles is mutated and
in AMPSO2, the global best (gbest) position of the
particle is mutated. The particles are mutated at the end of
each iteration according to the following rule:

()* jijijij Betarandxx σ ′+= (3)
where, τσσ exp(*ijij =′ τ ′+)1,0(N))1,0(jN , N(0, 1)
denotes a normally distributed random number with mean
zero and standard deviation one. Nj (0, 1) indicates that a
different random number is generated for each value of j.

τ and τ′ are set as n2/1 and n2/1 respectively [4].
Betarandj () is a random number generated by beta
distribution with parameters less than 1.
The computational steps of proposed algorithm are given
below.

1. Initialize the swarm with uniformly distributed
random numbers. Each particle is taken as a pair

of real-valued vectors,),(iix σ .The ix ’s give the
ith particle of the swarm and iσ ’s the associated
strategy parameters.

2. Update velocity and position vector using
equation (1) and (2).

3. Calculate the fitness value, fitnessi.
4. If (fitnessi < Pbesti) then set Pbesti = fitnessi. If

(Pbesti < gbest) then set gbest = Pbesti.
5. If (U (0, 1) < 1/d) then

 Apply mutation to Pbest using equation (3).
 Evaluate the fitness value, fitnessi.

 If (fitnessi < Pbesti) then set Pbesti = fitnessi.
 If (Pbesti < gbest) then set gbest = Pbesti.
Here U (0, 1) is the uniformly distributed
random number in the interval (0, 1). d is the
dimension.

6. Repeat the loop until stopping criteria is reached.
The algorithmic steps of PSO with gbest mutation is the
same as the above, just Beta distribution mutating the
gbest instead of Pbest.

4. Experimental Settings

Experimental settings for BPSO, AMPSO1, AMPSO2
and EP

 BPSO AMPSO I and II EP
Population size is taken 30 for all algorithms
w (linearly
decreasing)

(0.9-0.4) (0.9-0.4) NA

c1, c2 1.8 1.8 NA
Mutation
Probability

NA Beta
Distribution

Gaussian
Distribution

Computer
settings

All experiments are conducted on a PIV PC
using DEV C++

Maximum iterations for all algorithms taken as 3000
A total of 30 runs for each experimental setting were
conducted and the average fitness of the best solutions
throughout the run was recorded.

4.1. Benchmark problems and numerical results

 The proposed versions are tested on 12 classical
benchmark problems (unconstrained) given in Table 1 [5].
Functions f1, f3, f5, f6, f7, f8 are highly multimodal; f2,
f4, f10, f11 are unimodal; ‘f2’ is unimodal function but
when the dimensions are increased the convergence rate
becomes slow; f12 is a step function which is
discontinuous and has one minimum;f9 is a nosiy
function. All the problems are scalable in order to check
the efficiency of the proposed algorithms for higher
dimensions. Since AMPSO contains the features of both

PSO and EP we compared its performance with basic
PSO (BPSO), EP and some refined versions of PSO and
EP. In Table 2, we show comparison of AMPSO1 and
AMPSO2 with BPSO and EP. In Table 3, we compare the
performance of proposed algorithms with modified
versions of PSO having Gaussian [6] and Cauchy
mutation [7]. Table 4, gives the comparison with EP
having adaptive Gaussian and Cauchy mutations [8].
Numerical results given in Table 2, show that AMPSO2
gives the best values in terms of average fitness function
value for all the test functions except f5, where EP gave a
slightly better performance. Here we would like to
mention that results given in Table 2 are strictly with
respect to the experimental settings given in Section 4.
 Table 3, gives only four test problems because we were
able to locate only four problems that have been solved by
the other mentioned versions of PSO. Here also it is
evident from the table that AMPSO2 gave best
performance for all the 4 test problems. Table 4, gives the
comparison of AMPSO versions with two versions of EP
namely FEP and CEP. FEP uses self adaptive Cauchy
mutation and CEP is the classical EP using self adaptive
Gaussian mutation. The difference in the results of EP
given in Table 2 and CEP given in Table 5 is because of
different experimental settings (please see [8] for
experimental settings of CEP and FEP). Despite different
experimental settings, it can be observed from Table 5,
that AMPSO2 gave a superior performance in 7 out of 12
problems whereas FEP gave better results in 4 out of 12
test problems. In case of f12, except for CEP, all the
algorithms converged to 0. Figures 1 - 4 show the
performance of some selected benchmark problems.

4.2. Real life problems and numerical results

 Three constrained optimization problems common in
the field of electrical engineering are taken: Dynamic
Power and Static power scheduling problem [9] and
electric network optimization problem [10]. Constraints
are handled by Penalty method [4]. For the comparison of
real life problems, we have only considered only BPSO
and EP besides AMPSO1 and AMPSO2, because as
mentioned earlier the other algorithms cited in this paper
have not been used to solve the same set of constrained
real life problems. From the numerical results no
algorithm can be called a clear winner. For the first
problem, AMPSO2 gave the best performance followed
AMPSO1. In the second problem, AMPSO1 gave the best
results; in second place we got AMPSO2. However, in the
third problem EP emerged as a winner followed by
AMPSO2 with a marginal difference which in turn was
followed by AMPSO1 and finally by BPSO.

Table 1. Numerical Benchmark Problems. All problems are of dimension 30
Function Range Optimum

)10)2cos(10()(
1

2
1 +−= ∑

=
i

n

i
i xxxf π [-5.12,5.12] 0

∑
=

=
n

i
ixxf

1

2
2)([-5.12,5.12] 0

1)
1

cos(
4000

1)(
1

0

1

0

2
3 +

+
−= ∑∑

−

=

−

=

n

i

in

i
i

i
x

xxf [-600,600] 0

21

0

22
14)1()(100)(−+−= ∑

−

=
+ i

n

i
ii xxxxf [-30,30] 0

)||sin()(
1

5 ∑
=

−=
n

i
ii xxxf [-500,500] -418.9829*n

)))3(sin1()1(()3(){sin1.0()(1
1

1

22
1

2
6 +

−

=
∑ +−+= i
n

i
i xxxxf ππ

 ∑++−+
−

=

1

0

2)4,100,5,())}2(sin1)(1(
n

i
inn xuxx π

[-50,50] -1.1428

∑
−

=
++−+=

1

1
1

22
1

2
7)](sin101[)1()(sin10{)(

n

i
ii yyy

n
xf πππ)4,100,10,(})1(

1

2 ∑+−+
=

n

i
in xuy [-50,50] 0

)12.0exp(2020)(
1

2
8 ∑

=
−−+=

n

i
ix

n
exf ∑−

=

n

i
ix

n 1
))2cos(1exp(π [-32,32] 0

∑
−

=
++=

1

0

4
9]1,0[))1(()(

n

i
i randxixf [-1.28,1.28] 0

||max)(10 ixxf = , ni <≤0 [-100,100] 0

∑ ∏
−

=

−

=

+=
1

0

1

0
11 ||||)(

n

i

n

i
ii xxxf [-10,10] 0

⎣ ⎦∑
−

=
+=

1

0

2
12 2/1)(

n

i
ixxf [-100,100] 0

Figure 1. Performance for function f1. Figure 2. Performance for function f2

Figure 3. Performance for function f3 Figure 4. Performance for function f5

Table 2. Numerical results of proposed algorithms in comparison with BPSO and EP

Funct BPSO AMPSO1 AMPSO2 EP
f1 37.819 (7.455) 31.838 (6.004) 18.307 (2.658) 184.097 (20.483)
f2 3.542e-16(4.26e-16) 2.320e-36 (4.573e-36) 4.343e-40 (7.930e-40) 25.257(5.714)
f3 0.018(0.023) 1.626-19(9.812e-09) 8.673e-20(3.160e-20) 1.073(0.025)
f4 81.273(41.218) 29.137(25.014) 24.171(16.361) 157.385(154.873)
f5 -10652.33(663.174) -11937.801 (383.462) -12214.17(212.29) -12297.4(676.107)
f6 -1.138 (0.005) -1.139 (0.024) -1.144 (0.010) -0.986(0.185)
f7 0.020(0.052) 5.505e-13(1.757e-12) 5.505e-13(1.757e-12) 14.76(5.046)
f8 1.02e-08(1.90e-08) 5.61e-17(1.046e-17) 3.187e-17(3.913e-13) 10.30(1.053)
f9 0.508(0.2508) 0.4670(0.313) 0.416(0.220) 5.387(1.711)
f10 5.357(3.204) 0.155(0.110) 0.147(0.131) 9.919(1.301)
f11 2.06e-11(5.853e-12) 4.55e-16 (1.82e-15) 1.392e-17(3.438e-17) 32.894(4.478)
f12 0.05(0.217) 0.000(0.000) 0.000 (0.000) 1.533 (2.276)

Table 3. Numerical results of proposed algorithms in comparison with CPSO and GMPSO.

Funct AMPSO1 AMPSO2 CPSO [7] GMPSO [6]
f1 31.838(6.004) 18.307(2.658) 69.050(16.419) 26.266(3.258)

f2 2.320e-36(4.573e-36) 4.343e-40(7.930e-40) 2.36e-26(1.5e-25) 2.65e-15(2.56e-14)

f4 29.137(25.014) 24.171(16.361) 29.084(31.460) 27.932(26.115)

f8 5.616e-17(1.046e-17) 3.187e-17(3.913e-13) 5.651(1.333) 6.75e-12(3.21e-12)

Table 4. Numerical results of proposed algorithms in comparison with FEP and CEP
Funct AMPSO1 AMPSO2 FEP[8] CEP[8]

f1 31.838(6.004) 18.307(2.658) 4.6e-2(1.2e-2) 89.0(23.1)
f2 2.32e-36(4.57e-36) 4.34e-40 (7.93e-40) 5.7e-4(1.3e-4) 2.2e-4(5.9e-4)
f3 1.626e-19(9.812e-09) 8.673e-20 (3.160e-20) 1.6e-22.(2e-10) 8.6e-20.12
f4 29.137(25.014) 24.171(16.361) 5.06(5.87) 6.17(13.61)
f5 -11937.80(383.46) -12214.17(212.29) -12554.5(52.6) -7917.1(634.5)
f6 -1.139 (0.024) -1.144(0.010) 1.6e-4(7.3e-5) 1.4(3.7)
f7 5.505e-13(1.757e-12) 5.505e-13(1.75e-12) 9.2e-6(3.6e10) 1.76(2.4)
f8 5.616e-17(1.046e-17) 3.187e-17(3.91e-13) 1.8e-2(2.1e-3) 9.2(2.8)
f9 0.467(0.313) 0.4168(0.22) 7.6e-3(2.6e-3) 1.8e-2(6.4e-3)
f10 0.155(0.110) 0.147(0.131) 0.3(0.5) 2.0(1.2)
f11 4.55e-16(1.821e-15) 1.392e-17(3.438e-17) 8.1e-3(7.7e-4) 2.6e-3(1.7e-4)
f12 0.000(0.000) 0.000(0.000) 0.000(0.000) 577.76(1125.7)

Table 5. Numerical results of Real Life problems
Dynamic Power Scheduling problem

Algorithm Best Average Worst Std
BPSO 666.6352 717.552687 802.85215 25.031686
EP 685.444 705.118 736.237 13.7668
AMPSO1 665.3734 698.83783 723.0659 20.174152
AMPSO2 664.45585 700.761712 717.09795 16.833555

Static Power Scheduling
Algorithm Best Average Worst Std
BPSO 5061.01219 5154.529748 5221.47662 42.762777
EP 5078.47 5266.97 5432.6 55.9326
AMPSO1 5051.31152 5135.814972 5195.84009 36.365148
AMPSO2 5055.06909 5149.44626 5203.13869 35.75362

Electric Network Optimization
Algorithm Best Average Worst Std
BPSO 8873.01753 9084.32555 9307.9852 141.867249
EP 8860.69 8998.56 9115.98 106.282
AMPSO1 8867.42125 9039.478666 9308.63886 130.941717
AMPSO2 8866.28340 9031.81355 9294.83343 125.210766

5. Conclusion

Two new variants viz. AMPSO1 and AMPSO2 with self
adaptive mutation probability are proposed. The novelty
of the approach is the use of Beta distribution, which to
the best of our knowledge, has not been used for self
adaptive mutation. The numerical results show that the
performance of Beta probability distribution is at par with
Gaussian and Cauchy distributions and is in fact better in
some of the cases under the given experimental settings.
We would like to add that the performance comparison
given in Table 3 and Table 4 are not very fair because of
different experimental settings. However, we can say that
under the experimental settings taken in this paper
AMPSO2 gives good results for unconstrained test
problems. For constrained real life problems the picture is
not very clear and we are doing further investigations. In
future we plan to compare different algorithms under
similar parameter settings, in order to give a fair chance to
every algorithm.

References
[1] R.C. Eberhart, Y. Shi, “Particle Swarm Optimization:

developments, Applications and Resources,” IEEE
Int. Conference on Evolutionary Computation, 2001,
pg. 81 -86.

[2] H. Liu, A. Abraham and W. Zhang, “A Fuzzy
Adaptive Turbulent Particle Swarm Optimization”,
International Journal of Innovative Computing and
Applications, Volume 1, Issue 1, 2007, pp. 39-47.

[3] D. B. Fogel, “Evolutionary Computation: Toward a
new Philosophy of Machine Intelligence”, IEEE
press, 1995.

[4] A.P. Engelbrecht, “Fundamentals of Computational
Swarm Intelligence,” John Wiley & Sons Ltd, 2005.

[5] J. Vesterstrom, R. Thomsen, “A Comparative study
of Differential Evolution, Particle Swarm
optimization, and Evolutionary Algorithms on
Numerical Benchmark Problems,” in Proc. IEEE
Congr. Evolutionary Computation, Portland, OR,
Jun. 20 – 23, 2004, pg. 1980 – 1987.

[6] M. Pant, T. Radha and V. P. Singh, “A New
Diversity Based Particle Swarm Optimization using
Gaussian Mutation”, Int. J. of Mathematical
Modeling, Simulation and Applications, 1(1), pp. 47-
60, 2008.

[7] A. Stacey, M. Jancic, and I. Grundy. Particle Swarm
Optimization with Mutation. In Proceedings of the
IEEE Congress on Evolutionary Computation, (2),
pp. 1425 – 1430, 2003.

[8] X. Yao and Y. Liu, “Fast Evolutionary
Programming”, In Proc. of 5th Ann. Conf. on
Evoluationary Programming, pp. 451 – 460, 1996.

[9] M. C. B-Biggs, “A Numerical Comparison between
Two Approaches to the Nonlinear Programming
Problem”, In: L. C. W. Dixon and G. P. Szego, eds.,
Towards Global Optimization 2, Amsterdam,
Holland: North Holland Publishing Company, pp.
293 – 312, 1978.

[10] D. M. Himmelblau, “Applied Non-Linear
programming”, New York: McGraw-Hill, 1972.

