
9. Evolutionary Computation in Intelligent
Network Management

Ajith Abraham

Natural Computation Lab
Department of Computer Science
Oklahoma State University,USA
ajith.abraham@ieee.org

Abstract: Data mining is an iterative and interactive process concerned
with discovering patterns, associations and periodicity in real world data.
This chapter presents two real world applications where evolutionary com-
putation has been used to solve network management problems. First, we
investigate the suitability of linear genetic programming (LGP) technique
to model fast and efficient intrusion detection systems, while comparing its
performance with artificial neural networks and classification and regression
trees. Second, we use evolutionary algorithms for a Web usage-mining prob-
lem. Web usage mining attempts to discover useful knowledge from the sec-
ondary data obtained from the interactions of the users with the Web. Evo-
lutionary algorithm is used to optimize the concurrent architecture of a fuzzy
clustering algorithm (to discover data clusters) and a fuzzy inference system
to analyze the trends. Empirical results clearly shows that evolutionary al-
gorithm could play a major rule for the problems considered and hence an
important data mining tool.

9.1 Intrusion Detection Systems

Security of computers and the networks that connect them is increasingly
becoming of great significance. Computer security is defined as the protec-
tion of computing systems against threats to confidentiality, integrity, and
availability. There are two types of intruders: the external intruders who are
unauthorized users of the machines they attack, and internal intruders, who
have permission to access the system with some restrictions. The traditional
prevention techniques such as user authentication, data encryption, avoid-
ing programming errors and firewalls are used as the first line of defense for
computer security. If a password is weak and is compromised, user authen-
tication cannot prevent unauthorized use, firewalls are vulnerable to errors
in configuration and ambiguous or undefined security policies. They are gen-
erally unable to protect against malicious mobile code, insider attacks and
unsecured modems. Programming errors cannot be avoided as the complex-
ity of the system and application software is changing rapidly leaving behind
some exploitable weaknesses. Intrusion detection is therefore required as an
additional wall for protecting systems [9.10, 9.151. Intrusion detection is use-

190 Abraham

ful not only in detecting successful intrusions, but also provides important
information for timely countermeasures [9.18, 9.191. An intrusion is defined
as any set of actions that attempt to compromise the integrity, confidential-
ity or availability of a resource. An attacker can gain access because of an
error in the configuration of a system. In some cases it is possible to fool a
system into giving access by misrepresenting oneself. An example is sending
a TCP packet that has a forged source address that makes the packet appear
to come from a trusted host. Intrusions may be classified into several types
[9.19] .
- Attempted break-ins, which are detected by typical behavior profiles or

violations of security constraints.
- Masquerade attacks, which are detected by atypical behavior profiles or

violations of security constraints.
- Penetration of the security control system, which are detected by monitor-

ing for specific patterns of activity.
- Leakage, which is detected by atypical use of system resources.
- Denial of service, which is detected by atypical use of system resources.
- Malicious use, which is detected by atypical behavior profiles, violations of

security constraints, or use of special privileges.

The process of monitoring the events occurring in a computer system
or network and analyzing them for sign of intrusions is known as Intrusion
detection. Intrusion detection is classified into two types: misuse intrusion
detection and anomaly intrusion detection.

- Misuse intrusion detection uses well-defined patterns of the attack that
exploit weaknesses in system and application software to identify the in-
trusions. These patterns are encoded in advance and used to match against
the user behavior to detect intrusion.

- Anomaly intrusion detection uses the normal usage behavior patterns to
identify the intrusion. The normal usage patterns are constructed from
the statistical measures of the system features, for example, the CPU and
I/O activities by a particular user or program. The behavior of the user
is observed and any deviation from the constructed normal behavior is
detected as intrusion.

We have two options to secure the system completely, either prevent the
threats and vulnerabilities which come from flaws in the operating system as
well as in the application programs or detect them and take some action to
prevent them in future and also repair the damage. It is impossible in practice,
and even if possible, extremely difficult and expensive, to write a completely
secure system. Transition to such a system for use in the entire world would
be an equally difficult task. Cryptographic methods can be compromised
if the passwords and keys are stolen. No matter how secure a system is,
it is vulnerable to insiders who abuse their privileges. There is an inverse

9. Evolutionary Computation in Intelligent Network Management 191

relationship between the level of access control and efficiency. More access
controls make a system less user-friendly and more likely of not being used.

An Intrusion Detection system is a program (or set of programs) that
analyzes what happens or has happened during an execution and tries to
find indications that the computer has been misused. An Intrusion detection
system does not eliminate the use of preventive mechanism but it works as
the last defensive mechanism in securing the system. Data mining approaches
are a relatively new technique for intrusion detection.

9.1.1 Intrusion Detection - a Data Mining Approach

Data mining is a relatively new approach for intrusion detection. Data min-
ing approaches for intrusion detection was first implemented in Mining Audit
Data for Automated Models for Intrusion Detection [9.14] . The raw data
is first converted into ASCII network packet information which in turn is
converted into connection level information. These connection level records
contain within connection features like service, duration etc. Data mining al-
gorithms are applied to this data to create models to detect intrusions. Data
mining algorithms used in this approach are RIPPER (rule based classifica-
tion algorithm), meta-classifier, frequent episode algorithm and association
rules. These algorithms are applied to audit data to compute models that
accurately capture the actual behavior of intrusions as well as normal activ-
ities.

The RIPPER algorithm was used to learn the classification model in order
to identify normal and abnormal behavior [9.8] . Frequent episode algorithm
and association rules together are used to construct frequent patterns from
audit data records. These frequent patterns represent the statistical sum-
maries of network and system activity by measuring the correlations among
system features and sequential co-occurrence of events. From the constructed
frequent patterns the consistent patterns of normal activities and the unique
intrusion patterns are identified and analyzed, and then used to construct ad-
ditional features. These additional features are useful in learning the detection
model more efficiently in order to detect intrusions. RIPPER classification
algorithm is then used to learn the detection model. Meta classifier is used
to learn the correlation of intrusion evidence from multiple detection models
and produce combined detection model. The main advantage of this system
is automation of data analysis through data mining, which enables it to learn
rules inductively replacing manual encoding of intrusion patterns. However,
some novel attacks may not be detected.

Audit Data Analysis and Mining combines association rules and classi-
fication algorithm to discover attacks in audit data [9.5] . Association rules
are used to gather necessary knowledge about the nature of the audit data
as the information about patterns within individual records can improve the
classification efficiency. This system has two phases, training phase and de-
tection phase. In the training phase database of frequent item sets is created

192 Abraham

for the attack-free items from using only attack-free data set. This serves as
a profile against which frequent item sets found later will be compared. Next
a sliding-window, on-line algorithm is used to find frequent item sets in the
last D connections and compares them with those stored in the attack-free
database, discarding those that are deemed normal. In this phase classifier is
also trained to learn the model to detect the attack. In the detection phase
a dynamic algorithm is used to produce item sets that are considered as sus-
picious and used by the classification algorithm already learned to classify
the item set as attack, false alarm (normal event) or as unknown. Unknown
attacks are the ones which are not able to detect either as false alarms or as
known attacks. This method attempts to detect only anomaly attacks.

9.1.2 Linear Genetic Programming (LGP)

Linear genetic programming is a variant of the GP technique that acts on
linear genomes. Its main characteristics in comparison to tree-based GP lies
in that the evolvable units are not the expressions of a functional program-
ming language (like LISP), but the programs of an imperative language (like
c/c ++) [9.7] . An alternate approach is to evolve a computer program at
the machine code level, using lower level representations for the individuals.
This can tremendously hasten up the evolution process as, no matter how
an individual is initially represented, finally it always has to be represented
as a piece of machine code, as fitness evaluation requires physical execution
of the individuals. The basic unit of evolution here is a native machine code
instruction that runs on the floating-point processor unit (FPU). Since dif-
ferent instructions may have different sizes, here instructions are clubbed up
together to form instruction blocks of 32 bits each. The instruction blocks
hold one or more native machine code instructions, depending on the sizes of
the instructions. A crossover point can occur only between instructions and
is prohibited from occurring within an instruction. However the mutation o p
eration does not have any such restriction. One of the most serious problems
of standard genetic programming is the convergence of the population. It has
been often observed that unless convergence is achieved within certain num-
ber of generations, the system will never converge. Parallel populations or
demes may possess different parameter settings that can be explored simul-
taneously, or they may cooperate with the same set of parameters, while each
working on different individuals. In this research, we used circular movement
of evolved programs among the demes, i.e., program movement can take place
only between adjacent demes in the circle. Steady state genetic programming
approach was used to manage the memory more effectively.

9.1.3 Decision Trees (DT) as Intrusion Detection Model

Intrusion detection can be considered as classification problem where each
connection or user is identified either as one of the attack types or normal

9. Evolutionary Computation in Intelligent Network Management 193

based on some existing data. Decision trees work well with large data sets.
This is important as large amounts of data flow across computer networks.
The high performance of Decision trees makes them useful in real-time in-
trusion detection. Decision trees construct easily interpretable models, which
is useful for a security officer to inspect and edit. These models can also
be used in the rule-based models with minimum processing [9.13] . Gener-
alization accuracy of decision trees is another useful property for intrusion
detection model. There will always be some new attacks on the system, which
are small variations of known attacks after the intrusion detection models are
built. The ability to detect these new intrusions is possible due to the gener-
alization accuracy of decision trees.

9.1.4 Support Vector Machines (SVM)

Support Vector Machines have been proposed as a novel technique for intru-
sion detection. SVM maps input (real-valued) feature vectors into a higher
dimensional feature space through some nonlinear mapping. SVMs are pow-
erful tools for providing solutions to classification, regression and density
estimation problems. These are developed on the principle of structural risk
minimization. Structural risk minimization seeks to find a hypothesis h for
which one can find lowest probability of error. The structural risk minimiza-
tion can be achieved by finding the hyper plane with maximum separable
margin for the data [9.22] .

Computing the hyper plane to separate the data points i.e. training a SVM
leads to quadratic optimization problem. SVM uses a feature called kernel to
solve this problem. Kernel transforms linear algorithms into nonlinear ones
via a map into feature spaces. There are many kernel functions; some of them
are Polynomial, radial basis functions, two layer sigmoid neural nets etc. The
user may provide one of these functions at the time of training classifier, which
selects support vectors along the surface of this function. SVMs classify data
by using these support vectors, which are members of the set of training
inputs that outline a hyper plane in feature space. The main disadvantage is
SVM can only handle binary-class classification whereas intrusion detection
requires multi-class classification.

9.1.5 Intrusion Detection Data

In 1998, DARPA intrusion detection evaluation program created an environ-
ment to acquire raw TCP/IP dump data for a network by simulating a typical
U.S. Air Force LAN [9.16]. The LAN was operated like a real environment,
but being blasted with multiple attacks. For each TCP/IP connection, 41 var-
ious quantitative and qualitative features were extracted. Of this database
a subset of 494021 data were used for our studies, of which 20% represent
normal patterns 19.121. Different categories of attacks are summarized in Fig.
9.1. Attack types fall into four main categories:

194 Abraham

1. Probing: surveillance and other probing
Probing is a class of attacks where an attacker scans a network to gather
information or find known vulnerabilities. An attacker with a map of
machines and services that are available on a network can use the infor-
mation to look for exploits. There are different types of probes: some of
them abuse the computer's legitimate features; some of them use social
engineering techniques. This class of attacks is the most commonly heard
and requires very little technical expertise.

I ng.

I R@'T~%

Fig. 9.1. Intrusion detection data distribution

2. DoS: denial of service
Denial of Service (DoS) is a class of attacks where an attacker makes
some computing or memory resource too busy or too full to handle legit-
imate requests, thus denying legitimate users access to a machine. There
are different ways to launch DoS attacks: by abusing the computers legit-
imate features; by targeting the implementations bugs; or by exploiting
the system's miscodigurations. DoS attacks are classified based on the
services that an attacker renders unavailable to legitimate users.

3. U2Su: unauthorized access to local super user (root) privileges
User to root (U2Su) exploits are a class of attacks where an attacker
starts out with access to a normal user account on the system and is able
to exploit vulnerability to gain root access to the system. Most common

9. Evolutionary Computation in Intelligent Network Management 195

exploits in this class of attacks are regular buffer overflows, which are
caused by regular programming mistakes and environment assumptions.

4. R2L: unauthorized access from a remote machine
A remote to user (R2L) attack is a class of attacks where an attacker
sends packets to a machine over a network, then exploits machine's vul-
nerability to illegally gain local access as a user. There are different types
of R2U attacks; the most common attack in this class is done using social
engineering.

Experimentation setup and results. We performed a 5-class classifica-
tion. The (training and testing) data set contains 11982 randomly generated
points from the data set representing the five classes, with the number of
data from each class proportional to its size, except that the smallest class
is completely included. The set of 5092 training data and 6890 testing data
are divided in to five classes: normal, probe, denial of service attacks, user
to super user and remote to local attacks. Where the attack is a collection
of 22 different types of instances that belong to the four classes described
earlier and the other is the normal data. The normal data belongs to class
1, probe belongs to class 2, denial of service belongs to class 3, user to super
user belongs to class 4, remote to local belongs to class 5. Two randomly
generated separate data sets of sizes 5092 and 6890 are used for training and
testing the LGP, DT and SVM respectively.
Experiments using linear genetic programming. The settings of vari-
ous linear genetic programming system parameters are of utmost importance
for successful performance of the system. The population space has been
subdivided into multiple subpopulation or demes. Migration of individuals
among the subpopulations causes evolution of the entire population. It helps
to maintain diversity in the population, as migration is restricted among the
demes. Moreover, the tendency towards a bad local minimum in one deme
can be countered by other demes with better search directions. The various
LGP search parameters are the mutation and the crossover frequencies. The
crossover operator acts by exchanging sequences of instructions between two
tournament winners. After a trial and error approach, the following parame-
ter settings were used to develop IDS.

Figs. 9.2, 9.3, 9.4, 9.5 and 9.6 demonstrates the growth in program length
during 120,000 tournaments and the average fitness values for all the five
classes. Test data classification accuracy is depicted in Table 9.2.
Experiments using support vector machines. Our trial experiments
revealed that the polynomial kernel option often performs well on most of
the data sets. Classification accuracies for the different types of attacks (test
data) are depicted in Table 9.2
Experiments using decision trees. First a classifier is constructed using
the training data and then testing data is tested with the constructed classifier
to classify the data into normal or attack. Table 9.2 summarizes the results
of the test data.

196 Abraham

Table 9.1. Parameter settings for linear genetic programming

Parameter Normal Probe DoS U2Su R2L

Population size 2048 2048 2048 2048 2048
Maximum no of tournaments 120000 120000 120000 120000 120000
Tournament size 8 8 8 8 8
Mutation frequency (%) 85 82 75 86 85
Crossover frequency (%) 75 70 65 75 70
Number of demes 10 10 10 10 10
Maximum program size 256 256 256 256 256

Fig. 9.2. Detection of normal patterns (a) growth in program length (b) average
fitness

Probe

Fig. 9.3. Detection of probe (a) Growth in program length (b) average training
fitness

Table 9.2. Parameter settings for linear genetic programming

Class type Classification accuracy (%)
DT SVM LGP

Normal 99.64 99.64 99.73
Probe 99.86 98.57 99.89
DOS 96.83 99.92 99.95
U2R 68.00 40.00 64.00
R2L 84.19 33.92 99.47

9. Evolutionary Computation in Intelligent Network Management 197

Fig. 9.4. Detection of DoS (a) growth in program length (b) average training
fitness

Fig. 9.5. Detection of U2Su (a) growth in program length (b) average training
fitness

Fig. 9.6. Detection of R2L (a) growth in program length (b) average training
fitness

198 Abraham

9.1.6 Discussions

A number of observations and conclusions are drawn from the results illus
trated in Table 9.1. LGP outperformed decision trees and support vector
machines in terms of detection accuracies (except for one class). Decision
trees could be considered as the second best, especially for the detection of
U2R attacks. In some classes the accuracy figures tend to be very small and
may not be statistically significant, especially in view of the fact that the 5
classes of patterns differ in their sizes tremendously. More definitive conclu-
sions can only be made after analyzing more comprehensive sets of network
traffic data.

9.2 Web usage Mining using Intelligent Miner (i-Miner)

The WWW continues to grow at an amazing rate as an information gateway
and as a medium for conducting business. From the business and applica-
tions point of view, knowledge obtained from the Web usage patterns could
be directly applied to efficiently manage activities related to e-business, e-
services, e-education and so on. Web usage could be used to discover the
actual contents of the web pages (text, images etc.), organization of the hy-
perlink architecture (HTML/XML links etc.) of different pages and the data
that describes the access patterns (Web server logs etc.) [9.1, 9.201 . A t y p
ical Web log format is depicted in Fig. 9.7. When ever a visitor access the
server it leaves the IP, authenticated user ID, timeldate, request mode, sta-
tus, bytes, referrer, agent and so on. The available data fields are specified
by the HTTP protocol. In the case of Web mining, data could be collected
at the server level, client level, proxy level or some consolidated data. These
data could differ in terms of content and the way it is collected etc. The
usage data collected at different sources represent the navigation patterns of
different segments of the overall Web traffic, ranging from single user, single
site browsing behavior to multi-user, multi-site access patterns. Web server
log does not accurately contain sufficient information for inferring the behav-
ior at the client side as they relate to the pages served by the Web server.
Pre-processed and cleaned data could be used for pattern discovery, pattern
analysis, Web usage statistics and generating association/ sequential rules.

We present a hybrid Web usage mining framework (i-miner) as depicted
in Fig. 9.8 [9.4, 9.21. by clustering the visitors and analyzing the trends using
some function approximation algorithms. The hybrid framework optimizes
a fuzzy clustering algorithm using an evolutionary algorithm and a Takagi-
Sugeno fuzzy inference system using a combination of evolutionary algorithm
and neural network learning. The raw data from the log files are cleaned and
pre-processed and a fuzzy C means algorithm is used to identify the number
of clusters. The developed clusters of data are fed to a Takagi-Sugeno fuzzy
inference system to analyze the trend patterns. The if-then rule structures are

9. Evolutionary Computation in Intelligent Network Management

64.68.82.66 - - [17/l(ay/2003:03:41:23 -05001 "GET /marcin ElTP11.0" 404 318
192.114.47.54 - - [17/11ay/LU03:03:41:33 -05001 "GET /-oa/isda2002/isdaZ002.html BTIP/1.1" 404 350
216.239.37.5 - - [17/Iay/2003:03:41:43 -05001 "GET /-ijcr/Vols/vollO~l.html EITP/l.Ow 200 4565
218.244.111.106 - - [17/11ay/2003:03:41:51 -05001 "GET /-adhis/ B11P/1.lW 404 332
64.68.82.18 - - [17/My/2003:03:42:15 -05001 "GET /-p&p/Cfp/CfpBoOkRcviC~s.h~l BTTP/1.OW 304 -
212.98.136.62 - - [1?/l(ay/2003:03;43:Ll -05001 "GET /cs3373/proqranrr/pLp103.&t ETTP/l.l" 200 498
212.9s. 136.62 - - [17/My/?003:03:43:26 -05001 "GET / c s 3 3 7 3 / p r o g r ~ / p (p . 0 4 . h t m l BTTP/1.1* 200 55722
212.98.136.62 - - [17/Eay/2003:03:43:38 -0500] "GET /cs3373/imager/UaTor.gif ElTP/1.1" 200 39021
212.29.232.2 - - 117/Eny/2003:03:43:40 -05001 "GET /uelcome.htrnl ElTP/1.OW ZOO 5253

Fig. 9.7. Sample entries from a Web server access log

learned using an iterative learning procedure by an evolutionary algorithm
and the rule parameters are fine-tuned using a backpropagation algorithm.

Knowledge discovery and trend patterns - -

Fig. 9.8. i-Miner framework

The hierarchical distribution of the i-Miner is depicted in Fig. 9.9. The
arrow direction depicts the speed of the evolutionary search. The optimization
of clustering algorithm progresses at a faster time scale in an environment
decided by the inference method and the problem environment.

9.2.1 Optimization of Fuzzy Clustering Algorithm

One of the widely used clustering methods is the fuzzy c-means (FCM) al-
gorithm developed by Bezdek [9.6] . FCM partitions a collection of n vectors
xi = 1,2, ..., n into c fuzzy groups and finds a cluster center in each group
such that a cost function of dissimilarity measure is minimized. To accom-
modate the introduction of fuzzy partitioning, the membership matrix U is
allowed to have elements with values between 0 and 1.The FCM objective
function takes the form

200 Abraham

Pattern discovery and trend analysis

I f Optimization of fuzzy inference system

Optimization of clustering algorithm

(no of clusters, optimal centers etc.)

(usage patterns, association rules and forecasts etc.)

Fig. 9.9. Hierarchical architecture of i-Miner

where uij, is a numerical value between [0,1]; c, is the cluster center of fuzzy
group i ; dij = 1I~i-x~ 1 1 is the Euclidian distance between ith cluster center and
jth data point; and m is called the exponential weight which influences the
degree of fuzziness of the membership (partition) matrix. Usually a number
of cluster centers are randomly initialized and the FCM algorithm provides
an iterative approach to approximate the minimum of the objective function
starting from a given position and leads to any of its local minima [9.6] .
No guarantee ensures that FCM converges to an optimum solution (can be
trapped by local extrema in the process of optimizing the clustering criterion).
The performance is very sensitive to initialization of the cluster centers. An
evolutionary algorithm is used to decide the optimal number of clusters and
their cluster centers. The algorithm is initialized by constraining the initial
values to be within the space defined by the vectors to be clustered. A very
similar approach is given in [9.11] .

9.2.2 Optimization of the Fuzzy Inference System

We used the EvoNF framework [9.3], which is an integrated computational
framework to optimize fuzzy inference system using neural network learning
and evolutionary computation. Solving multi-objective scientific and engi-
neering problems is, generally, a very difficult goal. In these particular o p
timization problems, the objectives often conflict across a high-dimension
problem space and may also require extensive computational resources. The
hierarchical evolutionary search framework could adapt the membership func-
tions (shape and quantity), rule base (architecture), fuzzy inference mecha-
nism (T-norm and T-conorm operators) and the learning parameters of neural
network learning algorithm. In addition to the evolutionary learning (global

9. Evolutionary Computation in Intelligent Network Management

search) neural network learning could be considered as a local search tech-
nique to optimize the parameters of the rule antecedent/consequent parame-
ters and the parameterized fuzzy operators. The hierarchical search could be
formulated as follows: For every fuzzy inference system, there exist a global
search of neural network learning algorithm parameters, parameters of the
fuzzy operators, if-then rules and membership functions in an environment
decided by the problem. The evolution of the fuzzy inference system will
evolve at the slowest time scale while the evolution of the quantity and type
of membership functions will evolve at the fastest rate. The function of the
other layers could be derived similarly. Hierarchy of the different adaptation
layers (procedures) will rely on the prior knowledge (this will also help to
reduce the search space). For example, if we know certain fuzzy operators
will work well for a problem then it is better to implement the search of
fuzzy operators at a higher level. For fine-tuning the fuzzy inference system
all the node functions are to be parameterized. For example, the Schweizer
and Sklar's T-norm operator can be expressed as:

It is observed that

which correspond to two of the most frequently used T-norms in combin-
ing the membership values on the premise part of a fuzzy if-then rule.

fuzzy cluster parame

Fig. 9.10. Chromosome structure of the i-Miner

202 Abraham

Chromosome modelling and representation. Hierarchical evolutionary
search process has to be represented in a chromosome for successful modelling
of the i-Miner framework. A typical chromosome of the i-Miner would appear
as shown in Fig. 9.10 and the detailed modelling process is as follows.

Layer 1: The optimal number of clusters and initial cluster centers is repre-
sented this layer.

Layer 2: This layer is responsible for the optimization of the rule base. This
includes deciding the total number of rules, representation of the an-
tecedent and consequent parts. The number of rules grows rapidly with
an increasing number of variables and fuzzy sets. We used the grid-
partitioning algorithm to generate the initial set of rules [9.3]. An it-
erative learning method is then adopted to optimize the rules [9.9] . The
existing rules are mutated and new rules are introduced. The fitness of
a rule is given by its contribution (strength) to the actual output. To
represent a single rule a position dependent code with as many elements
as the number of variables of the system is used. Each element is a bi-
nary string with a bit per fuzzy set in the fuzzy partition of the variable,
meaning the absence or presence of the corresponding linguistic label in
the rule. For a three input and one output variable, with fuzzy partitions
composed of 3,2,2 fuzzy sets for input variables and 3 fuzzy sets for out-
put variable, the fuzzy rule will have a representation as shown in Fig.
9.5.

Layer 3: This layer is responsible for the selection of optimal learning param-
eters. Performance of the gradient descent algorithm directly depends on
the learning rate according to the error surface. The optimal learning
parameters decided by this layer will be used to tune the parameter-
ized rule antecedents/consequents and the fuzzy operators. The rule an-
tecedent/consequent parameters and the fuzzy operators are fine tuned
using a gradient descent algorithm to minimize the output error

N

E = C (d k - 2k)2
k=l

where dk is the kth component of the rth desired output vector and xk is
the kth component of the actual output vector by presenting the rth input
vector to the network. All the gradients of the parameters to be optimized,
namely the consequent parameters for all rules Rn and the premise
parameters and for all fuzzy sets Fi (a and c represents the MF
width and center of a Gaussian MF).

Once the three layers are represented in a chromosome C, and then the
learning procedure could be initiated as follows:

1. Generate an initial population of N numbers of C chromosomes. Evaluate
the fitness of each chromosome depending on the output error.

9. Evolutionary Computation in Intelligent Network Management 203

Depending on the fitness and using suitable selection methods reproduce
a number of children for each individual in the current generation.
Apply genetic operators to each child individual generated above and
obtain the next generation.

4. Check whether the current model has achieved the required error rate or
the specified number of generations has been reached. Go to Step b.

5. End

Experimentation setup, training and performance evaluation. To
demonstrate the efficiency of the proposed frameworks, Web access log data
at the Monash University's Web site [9.17] were used for experimentations.
We used the statistical/ text data generated by the log file analyzer from 01
January 2002 to 07 July 2002. Selecting useful data is an important task in the
data pre-processing block. After some preliminary analysis, we selected the
statistical data comprising of domain byte requests, hourly page requests and
daily page requests as focus of the cluster models for finding Web users' usage
patterns. It is also important to remove irrelevant and noisy data in order to
build a precise model. We also included an additional input 'index number'
to distinguish the time sequence of the data. The most recently accessed
data were indexed higher while the least recently accessed data were placed
at the bottom. Besides the inputs 'volume of requests' and 'volume of pages
(bytes)' and 'index number', we also used the 'cluster information' provided
by the clustering algorithm as an additional input variable. The data was
re-indexed based on the cluster information. Our task is to predict (few time
steps ahead) the Web traffic volume on a hourly and daily basis. We used the
data from 17 February 2002 to 30 June 2002 for training and the data from
01 July 2002 to 06 July 2002 for testing and validation purposes.

Table 9.3. Parameter settings of i-Miner

Population size
Maximum no of generations
Fuzzy inference system
Rule antecedent membership functions
Rule consequent parameters

Gradient descent learning
Ranked based selection
Elitism
Starting mutation rate

30
35
Takagi Sugeno
3 membership functions per input vari-
able (parameterized Gaussian) linear pa-
rameters
10 epochs
0.50
5 %
0.50

The initial populations were randomly created based on the parameters
shown in Table 9.1. We used a special mutation operator, which decreases
the mutation rate as the algorithm greedily proceeds in the search space [9.9]
. If the allelic value xi of the i-th gene ranges over the domain ai and bi the
mutated gene is drawn randomly uniformly from the interval [ai'bi].

204 Abraham

where w represents an unbiased coin flip p(w =0) = p(w =1) = 0.5, and

defines the mutation step, where y is the random number from the inter-
val [OJ] and t is the current generation and t,,, is the maximum number
of generations. The function computes a value in the range [O,x] such that
the probability of returning a number close to zero increases as the algorithm
proceeds with the search. The parameter b determines the impact of time on
the probability distribution A over [O,x]. Large values of b decrease the like-
lihood of large mutations in a small number of generations. The parameters
mentioned in Table 9.1 were decided after a few trial and error approaches.
Experiments were repeated 3 times and the average performance measures
are reported. Figs. 9.11 and 9.12 illustrates the meta-learning approach com-
bining evolutionary learning and gradient descent technique during the 35
generations.

Table 9.4 summarizes the performance of the developed i-Miner for train-
ing and test data. Performance is compared with the previous results [23]
wherein the trends were analyzed using a Takagi-Sugeno Fuzzy Inference
System (ANFIS) learned using neural network learning techniques and Lin-
ear Genetic Programming (LGP). The Correlation Coefficient (CC) for the
test data set is also given in Table 9.4.

Figs. 9.13 and 9.14 illustrate the actual and predicted trends for the test
data set. FCM approach created 9 data clusters for daily traffic according
to the input features compared to 7 data clusters (Fig. 9.15) for the hourly
requests.

Table 9.4. Performance of the different paradigms

Method Period

Daily (1 day ahead) Hourly (1 hour ahead)
RMSE CC RMSE CC

Train Test Train Test
i-Miner 0.0044 0.0053 0.9967 0.0012 0.0041 0.9981
TKFIS 0.0176 0.0402 0.9953 0.0433 0.0433 0.9841
LGP 0.0543 0.0749 0.9315 0.0654 0.0516 0.9446

The 35 generations of meta-learning approach created 62 if-then Takagi-
Sugeno type fuzzy rules (daily traffic trends) and 64 rules (hourly traffic

9. Evolutionary Computation in Intelligent Network Management 205

I i - Mher training peflormance

1 8 I 1 18 21 28 31

-c One day ahead trends t average hourly trends B d M h w b a a s (na dgemrs(h)

Fig. 9.11. Meta-learning performance (training) of i-Miner

r i - Miner test performance

1 8 11 18 21 26 31

+One day ahead trends t- average hourly trends M u t h V k a m h lm dIIemr#-I

Fig. 9.12. Meta-learning performance (testing) of i-Miner

206 Abraham

trends). Fig. 9.16 depicts the hourly visitor information according to domain
names from an FCM cluster. Fig. 9.17 illustrates the volume of visitors in
each FCM cluster according to the day of access.

,-

Dalyrequests

1200

Q
3 e 4 900

'i z
600

300

1 2 3 4 5 6
~ o f m r m k

RI iMiner Actual wl. ofrequeds CLOP

Fig. 9.13. Test results of the daily trends for 6 days

9.2.3 Discussions

Recently Web usage mining has been gaining a lot of attention because of
its potential commercial benefits. Empirical results show that the proposed
i-Miner framework seems to work very well for the problem considered. i-
Miner framework gave the overall best results with the lowest RMSE on
test error and the highest correlation coefficient. An important disadvantage
of i-Miner is the computational complexity of the algorithm. When optimal
performance is required (in terms of accuracy and smaller structure) such
algorithms might prove to be useful as evident from the empirical results. In
i-Miner evolutionary algorithm was used to optimize the various clustering
and fuzzy inference system parameters. It is interesting to note that even
LGP as a function approximator could pick up the trends accurately.

9.3 Conclusions

In this chapter, we have illustrated the importance of evolutionary algorithms
for the two network management related problems. For real time intrusion
detection systems LGP would be the ideal candidate as it could be manip-
ulated at machine code level. Experiments using the Web data has revealed

9. Evolutionary Computation in Intenigent Network Management

Fig. 9.14. Test results of the average hourly trends for 6 days

Fig. 9.15. Evolutionary FCM clustering: hour of the day and volume of requests.
The dark dots indicate the cluster centers

208 Abraham

Fig. 9.16. Hourly visitor information according to the domain names from an FCM
cluster

Cluster 6
82%

Fig. 9.17. Clustering of visitors based on the day of access from an FCM cluster

References 209

the importance of the optimization of fuzzy clustering algorithm and fuzzy
inference system. Among the various trend analysis algorithms considered,
LGP has again shown the capability as a robust function approximator.

Acknowledgements

Author wishes to thank Ms. Sandhya Peddabachigari (Oklahoma State Uni-
versity, USA), Mr. Vivek Gupta (IIT Bombay), Mr. Srinivas Mukkamala
(New Mexico Tech, USA) and Ms. Xiaozhe Wang (Monash University, Aus-
tralia) for all the valuable contributions during the different stages of this
research.

References

9.1 Abraham, A., Ramos, V. (2003): Web usage mining using artificial ant colony
clustering and genetic programming, 2003 IEEE Congress on Evolutionary
Computation (CEC2003), Australia, IEEE Press, 1384-1391

9.2 Abraham, A. (2003): Business intelligence from web usage mining, Journal of
Information & Knowledge Management (JIKM), World Scientific Publishing
Co., Singapore, 2

9.3 Abraham, A. (2002): EvoNF: A framework for optimization of fuzzy inference
systems using neural network learning and evolutionary computation, In Pro-
ceedings of 17th IEEE International Symposium on Intelligent Control, IEEE
Press, 327-332

9.4 Abraham, A. (2003): i-Miner: a web usage mining framework using hierarchi-
cal intelligent systems, The IEEE International Conference on fizzy Systems
FUZZ-IEEE703, IEEE Press, 1129-1134

9.5 Barbara, D., Couto, J., Jajodia, S., Wu, N. (2001): ADAM: a testbed for ex-
ploring the use of data mining in intrusion detection. SIGMOD Record, 30,
15-24

9.6 Bezdek, J. C. (1981): Pattern recognition with fuzzy objective function algo-
rithms, New York: Plenum Press.

9.7 Brameier, M., Banzhaf, W. (2001): A comparison of linear genetic program-
ming and neural networks in medical data mining. Evolutionary Computation,"
IEEE Transactions on, 5, 17-26

9.8 Cohen, W. (199): Learning trees and rules with set-valued features, American
Association for Artificial Intelligence (AAAI).

9.9 Cord&, O., Herrera, F., Hoffmann, F., Magdalena, L. (2001): Genetic fuzzy
systems: evolutionary tuning and learning of fuzzy knowledge bases, World
Scientific Publishing Company, Singapore.

9.10 Denning, D. (1987): An intrusion-detection model, IEEE Transactions on Soft-
ware Engineering, 13, 222-232

9.11 Hall, L.O., Ozyurt, I.B., Bezdek J. C. (1999): Clustering with a genetically
optimized approach, IEEE Transactions on Evolutionary Computation, 3, 103-
112

9.12 KDD cup (1999): intrusion detection data set:
<http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data-lO-percent.gz>

210 References

9.13 Brieman, L., Friedman, J., Olshen, R., Stone, C. (198): Classification of re-
gression trees. Wadsworth Inc.

9.14 Lee, W., Stolfo, S., Mok, K. (1999): A data mining framework for building
intrusion detection models. In Proceedings of the IEEE Symposium on Security
and Privacy.

9.15 Luo, J., Bridges, S. M. (2000): Mining fuzzy association rules and fuzzy fre-
quency episodes for intrusion detection. International Journal of Intelligent
Systems, John Wiley & Sons, 15, 687-704

9.16 MIT Lincoln Laboratory.
<http://www.ll.mit.edu/IST/ideval/>

9.17 Monash University Web site:
<http://www.monash.edu.au>

9.18 Mukkamala, S., Sung, A. H., Abraham A. (2003): Intrusion detection using
ensemble of soft computing paradigms. Third International Conference on In-
telligent Systems Design and Applications, Intelligent Systems Design and Ap-
plications, Advances in Soft Computing, Springer Verlag, Germany, 239-248

9.19 Peddabachigari, S., Abraham, A., Thomas, J. (2003): Intrusion detection sy5
tems using decision trees and support vector machines, International Journal
of Applied Science and Computations, USA

9.20 Srivastava, J., Cooley, R., Deshpande, M., Tan, P. N. (2000): Web usage min-
ing: discovery and applications of usage patterns from web data, SIGKDD
Explorations, 1, 12-23

9.21 Summers, R. C. (1997): Secure computing: threats and safeguards. McGraw
Hill, New York

9.22 Vapnik, V. N. (2002): The nature of statistical learning theory. Springer in
Wang, X., Abraham, A., Smith, K. A. Soft computing paradigms for web access
pattern analysis. Proceedings of the 1st International Conference on Fuzzy
Systems and Knowledge Discovery, 631-635

