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Hybridization of intelligent systems is a promising research field of modern
computational intelligence concerned with the development of the next gen-
eration of intelligent systems. A fundamental stimulus to the investigations of
hybrid intelligent systems is the awareness in the academic communities that
combined approaches might be necessary if the remaining tough problems in
artificial intelligence are to be solved. The integration of different learning and
adaptation techniques to overcome individual limitations and to achieve syn-
ergetic effects through the hybridization or fusion of these techniques has, in
recent years, contributed to a large number of new intelligent system designs.
Most of these hybridization approaches, however, follow an ad hoc design
methodology, justified by success in certain application domains.

This chapter introduces the designing aspects and perspectives of two dif-
ferent hybrid intelligent system architectures involving fuzzy inference sys-
tem, fuzzy clustering algorithm, neural network learning and evolutionary
algorithm. The first architecture introduces a Takagi-Sugeno fuzzy inference
system, which is optimized using a combination of neural network learning
and evolutionary algorithm. In the second architecture a fuzzy clustering al-
gorithm is used to segregate the data and then a fuzzy inference system is
used for function approximation. Both architectures are validated using real
world examples. Some conclusions are also provided towards the end.

8.1 Introduction

In recent years, several adaptive hybrid soft computing [27] frameworks have
been developed for model expertise, decision support, image and video seg-
mentation techniques, process control, mechatronics, robotics and complicated
automation tasks. Many of these approaches use a combination of differ-
ent knowledge representation schemes, decision making models and learning
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strategies to solve a computational task. This integration aims at overcoming
the limitations of individual techniques through hybridization or the fusion of
various techniques. These ideas have led to the emergence of several different
kinds of intelligent system architectures [15].

It is well known that intelligent systems, which can provide human-like ex-
pertise such as domain knowledge, uncertain reasoning, and adaptation to a
noisy and time-varying environment, are important in tackling practical com-
puting problems. Experience has shown that it is crucial, in the design of hy-
brid systems, to focus primarily on the integration and interaction of different
techniques rather than to merge different methods to create ever-new tech-
niques. Techniques already well understood should be applied to solve specific
domain problems within the system. Their weaknesses must be addressed by
combining them with complementary methods. Nevertheless, developing hy-
brid intelligent systems is an open-ended concept rather than restricting to
a few technologies. That is, it is evolving those relevant techniques together
with the important advances in other new computing methods.

We broadly classify the various hybrid intelligent architectures into 4 differ-
ent categories based on the system’s overall architecture namely stand-alone,
transformational, hierarchical hybrid and integrated hybrid systems [5, 17].
Fused architectures are the first true form of integrated intelligent systems.
They include systems which combine different techniques into one single com-
putational model. They share data structures and knowledge representations.
Another approach is to put the various techniques side-by-side and focus on
their interaction in a problem-solving task. This method can allow integra-
tion of alternative techniques and exploiting their mutuality. The benefits of
integrated models include robustness, improved performance and increased
problem-solving capabilities. Finally, fully integrated models can provide a
full range of capabilities such as adaptation, generalization, noise tolerance
and justification. The two architectures presented in this chapter belong to
integrated model.

Section 8.2 presents the hybrid framework for the adaptation of fuzzy
inference system using a combination of neural network learning and evolu-
tionary computation. An application example is also included in this section.
In Sect. 8.3, we present a hybrid combination of fuzzy clustering algorithm
and a fuzzy inference system for a Web mining task. Conclusions are given
towards the end.

8.2 Adaptation of Fuzzy Inference Systems

A conventional fuzzy inference system makes use of a model of the expert
who is in a position to specify the most important properties of the process.
Expert knowledge is often the main source for designing fuzzy inference sys-
tems. According to the performance measure of the problem environment, the
membership functions, the knowledge base and the inference mechanism are



8 Evolving Intelligence in Hierarchical Layers 161

to be adapted. Several research works continue to explore the adaptation of
fuzzy inference systems [2, 4, 16]. These include the adaptation of membership
functions, rule bases and the aggregation operators. They include but are not
limited to:

e The self-organizing process controller by Procyk et al. [19] which consid-
ered the issue of rule generation and adaptation.

e The gradient descent and its variants which have been applied to fine-tune
the parameters of the input and output membership functions [25].

e Pruning the quantity and adapting the shape of input/output membership
functions [23].
Tools to identify the structure of fuzzy models [21].
In most cases the inference of the fuzzy rules is carried out using the min
and max operators for fuzzy intersection and union. If the T-norm and T-
conorm operators are parameterized then the gradient descent technique
could be used in a supervised learning environment to fine-tune the fuzzy
operators.

The antecedent of the fuzzy rule defines a local fuzzy region, while the
consequent describes the behavior within the region via various constituents.
The consequent constituent can be a membership function (Mamdani model)
or a linear equation (first order Takagi-Sugeno model) [22].

Adaptation of fuzzy inference systems using evolutionary computation
techniques has been widely explored [2, 4, 7, 8, 18, 20]. The automatic
adaptation of membership functions is popularly known as self-tuning. The
genome encodes parameters of trapezoidal, triangle, logistic, hyperbolic-
tangent, Gaussian membership functions and so on.

The evolutionary search of fuzzy rules can be carried out using three ap-
proaches [10]. In the first (Michigan approach), the fuzzy knowledge base is
adapted as a result of the antagonistic roles of competition and cooperation
of fuzzy rules. Each genotype represents a single fuzzy rule and the entire
population represents a solution. The second method (Pittsburgh approach)
evolves a population of knowledge bases rather than individual fuzzy rules.
Genetic operators serve to provide a new combination of rules and new rules.
The disadvantage is the increased complexity of the search space and the addi-
tional computational burden, especially for online learning. The third method
(iterative rule learning approach) is similar to the first, with each chromosome
representing a single rule, but contrary to the Michigan approach, only the
best individual is considered to form part of the solution, the remaining chro-
mosomes in the population are discarded. The evolutionary learning process
builds up the complete rule base through an iterative learning process.

In a neuro-fuzzy model [4], there is no guarantee that the neural network-
learning algorithm will converge and the tuning of fuzzy inference system
be successful (determining the optimal parameter values of the membership
functions, fuzzy operators and so on). A distinct feature of evolutionary fuzzy
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systems is their adaptability to a dynamic environment. Experimental evi-
dence had indicated cases where evolutionary algorithms are inefficient at fine
tuning solutions, but better at finding global basins of attraction [2, 6, 14].
The efficiency of evolutionary training can be improved significantly by incor-
porating a local search procedure into the evolution. Evolutionary algorithms
are used to first locate a good region in the space and then a local search pro-
cedure is used to find a near optimal solution in this region. It is interesting to
consider finding good initial parameter values as locating a good region in the
space. Defining that the basin of attraction of a local minimum is composed
of all the points, sets of parameter values in this case, which can converge to
the local minimum through a local search algorithm, then a global minimum
can easily be found by the local search algorithm if the evolutionary algo-
rithm can locate any point, i.e, a set of initial parameter values, in the basin
of attraction of the global minimum. Referring to Fig. 8.1, G; and G5 could
be considered as the initial parameter values as located by the evolutionary
search and W, and Wp the corresponding final parameter values fine-tuned
by the meta-learning technique.

Training error

W1 Wi Wg Weo

Fig. 8.1. Fine tuning of parameters using hybrid learning

We present the Evolving Neuro Fuzzy (EvoNF) model which optimizes the
fuzzy inference system using a meta-heuristic approach combining neural net-
work learning and evolutionary computation. The proposed technique could
be considered as a methodology to integrate neural network learning, fuzzy
inference systems and evolutionary search procedures [2, 8].

The evolutionary search of membership functions, rule base, fuzzy oper-
ators progress on different time scales to adapt the fuzzy inference system
according to the problem environment. Figure 8.2 illustrates the general in-
teraction mechanism with the evolutionary search of a fuzzy inference system
(Mamdani, Takagi-Sugeno etc.) evolving at the highest level on the slowest
time scale. For each evolutionary search of fuzzy operators (for example, best
combination of T-norm, T-conorm and defuzzification strategy), the search
for the fuzzy rule base progresses at a faster time scale in an environment de-
cided by the fuzzy inference system and the problem. In a similar manner, the
evolutionary search of membership functions proceeds at a faster time scale
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Fig. 8.2. EvoNF general computational framework

(for every rule base) in the environment decided by the fuzzy inference system,
fuzzy operators and the problem. Thus, the evolution of the fuzzy inference
system evolves at the slowest time scale while the evolution of the quantity
and type of membership functions evolves at the fastest rate. The function
of the other layers could be derived similarly. The hierarchy of the different
adaptation layers (procedures) relies on prior knowledge. For example, if there
is more prior knowledge about the knowledge base (if-then rules) than the in-
ference mechanism then it is better to implement the knowledge base at a
higher level. If a particular fuzzy inference system best suits the problem, the
computational task could be reduced by minimizing the search space. The
chromosome architecture is depicted in Fig. 8.3.

The architecture and the evolving mechanism could be considered as a
general framework for adaptive fuzzy systems, that is a fuzzy model that can
change membership functions (quantity and shape), rule base (architecture),
fuzzy operators and learning parameters according to different environments
without human intervention.

FIS; ||:Iss ||=Is.J ‘

‘ FIS, | FIS; | FIS; |FIS4 FISy FISg
Inference system
‘ LR, | LR | LR3 |LR4 | LRs | LRg |LR7 | Tl
parameters of learning
algorithm
‘ OP, | oP, I 0Py |0P4 | OP5 | OPg |0P7 |
Fuzzy operators
| Rule; | Rule, | Rule; I Rule, | Rules
Fuzzy rules
|I\-1F1 | MFz | MFg | MFy [

Membership functions

Fig. 8.3. Chromosome structure of EvoNF model
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Fig. 8.4. Representation of n membership functions of a bell shape MF

Referring to Fig. 8.3 each layer (from fastest to slowest) of the hierarchical
evolutionary search process has to be represented in a chromosome for suc-
cessful modelling of EvoNF. The detailed functioning and modelling process
is as follows.

Layer 1: The simplest way is to encode the number of membership func-
tions per input variable and the parameters of the membership functions.
Figure 8.4 depicts the chromosome representation of n bell membership func-
tions specified by its parameters p, ¢ and r. The optimal parameters of the
membership functions located by the evolutionary algorithm will be further
fine tuned by the neural network-learning algorithm. Similar strategy could
be used for the output membership functions in the case of a Mamdani fuzzy
inference system. Experts may be consulted to estimate the MF shape forming
parameters to estimate the search space of the MF parameters.

In our experiments angular coding method proposed by Corddén et al.
were used to represent the rule consequent parameters of the Takagi-Sugeno
inference system [10].

Layer 2. This layer is responsible for the optimization of the rule base.
This includes deciding the total number of rules, representation of the an-
tecedent and consequent parts. Depending on the representation used (Michi-
gan, Pittsburg, iterative learning and so on), the number of rules grow rapidly
with an increasing number of variables and fuzzy sets. The simplest way is
that each gene represents one rule, and “1” stands for a selected and “0” for
a non-selected rule. Figure 8.5 displays such a chromosome structure repre-
sentation. To represent a single rule a position dependent code with as many
elements as the number of variables of the system is used. Each element is
a binary string with a bit per fuzzy set in the fuzzy partition of the vari-
able, meaning the absence or presence of the corresponding linguistic label
in the rule. For a three input and one output variable, with fuzzy partitions
composed of 3, 2, 2 fuzzy sets for input variables and 3 fuzzy sets for output
variable, the fuzzy rule will have a representation as shown in Fig. 8.6.

Layer 3. In this layer, a chromosome represents the different parameters of
the T-norm and T-conorm operators. Real number representation is adequate

Fig. 8.5. Representation of the entire rule base consisting of m fuzzy rules
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input variables output variable

Fig. 8.6. Representation of an individual fuzzy rule

to represent the fuzzy operator parameters. The parameters of the operators
could be even fine-tuned using gradient descent techniques.

Layer 4. This layer is responsible for the selection of optimal learning
parameters. Performance of the gradient descent algorithm directly depends
on the learning rate according to the error surface. Real number representa-
tion may be used to represent the learning parameters. The optimal learning
parameters decided by the evolutionary algorithm will be used in the learning
algorithm to tune the membership functions and the inference mechanism.

Layer 5. This layer basically interacts with the environment and decides
which fuzzy inference system (Mamdani type and its variants, Takagi-Sugeno
type, Tsukamoto type etc.) will be the optimal according to the environment.

Once the chromosome representation, C, of the entire EvoNF model is
done, the evolutionary search procedure could be initiated as follows:

1. Generate an initial population of N numbers of C chromosomes. Evaluate
the fitness of each chromosome depending on the problem.

2. Depending on the fitness and using suitable selection methods reproduce
a number of children for each individual in the current generation.

3. Apply genetic operators to each child individual generated above and ob-
tain the next generation.

4. Check whether the current model has achieved the required error rate or
the specified number of generations has been reached. Go to Step 2.

5. End

8.2.1 Application of EvoNF — Export Behavior Modelling

In this section, we will examine the application of the proposed EvoNF model
to approximate the export behavior of multi-national subsidiaries. Several spe-
cific subsidiary features identified in international business literature are par-
ticularly relevant when seeking to explain Multi-National Company (MNC)
subsidiary export behavior. Our purpose is to is to model the complex ex-
port pattern behavior using a Takagi-Sugeno fuzzy inference system in order
to determine the actual volume of Multinational Cooperation Subsidiaries
(MCS) export output (sales exported) [11]. Malaysia has been pursuing an
economic strategy of export-led industrialization. To facilitate this strategy,
foreign investment is courted through the creation of attractive incentive pack-
ages. These primarily entail taxation allowances and more liberal ownership
rights for investments. The quest to attract foreign direct investment (FDI)
has proved to be highly successful. The bulk of investment has gone into
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Table 8.1. Parameter settings of EvoNF framework

Population Size

40

Maximum no of generations
FIS

Rule antecedent MF

Rule consequent parameters

35

Takagi Sugeno

2 MF (parameterised Gaussian)/input
Linear parameters

Gradient descent learning 10 epochs
Ranked based selection 0.50
Elitism 5%
Starting mutation rate 0.50

export-oriented manufacturing industries. For simulations we have used data
provided from a survey of 69 Malaysian MCS. Each corporation subsidiary
data set were represented by product manufactured, resources, tax protection,
involvement strategy, financial independence and suppliers relationship.

We used the popular grid partitioning method to generate the initial rule
base [24]. This partition strategy works well when only few number of inputs
are involved since it requires only a small number of MF for each input.
We used 90% of the data for training and remaining 10% for testing and
validation purposes. The initial populations were randomly created based on
the parameters shown in Table 8.1. We used an adaptive mutation operator,
which decreases the mutation rate as the algorithm greedily proceeds in the
search space 0. The parameters mentioned in Table 8.1 were decided after a
few trial and error approaches. Experiments were repeated 3 times and the
average performance measures are reported. Figure 8.7 illustrates the meta-
learning approach for training and test data combining evolutionary learning
and gradient descent technique during the 35 generations.

The 35 generations of meta-learning approach created 76 if-then Takagi-
Sugeno type fuzzy if-then rules compared to 128 rules using the conventional

EVONF - learning performance

I i i MY PSS e s 22220 SE S IR I I T
1 6 1 16 21 26 31

—+— Train set convergence

P

L —— Test data convergence  Evolutionary learning (no. of generations) y

Fig. 8.7. Meta-learning performance (training and test) of EvoNF framework
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Table 8.2. Training and test performance of the different intelligent paradigms

Intelligent Paradigms

EvoNF Neural Network

Export Output RMSE RMSE
Train Test cC Train Test ceC
0.0013 0.012 0.989 [0.0107 ]0.1261 0.946

grid-partitioning method. We also used a feed forward neural network with
12 hidden neurons (single hidden layer) to model the export output for the
given input variables. The learning rate and momentum were set at 0.05 and
0.2 respectively and the network was trained for 10,000 epochs using BP.
The network parameters were decided after a trial and error approach. The
obtained training and test results are depicted in Table 8.2 (RMSE = Root
Mean Squared Error, CC = correlation coefficient).

Our analysis on the export behavior of Malaysia’s MCS reveals that the
developed EvoNF model could learn the chaotic patterns and model the be-
havior using an optimized Takagi Sugeno FIS. As illustrated in Fig. 8.8 and
Table 8.2, EvoNF' could approximate the export behavior within the toler-
ance limits. When compared to a direct neural network approach, EvoNF
performed better (in terms of lowest RMSE) and better correlation coeffi-
cient.

0.8
0.7F
0.6 *
0.5F
3 04f
5 sl .
0.2
0.1
ok * + * + . Y

-+

— 1
O'10 2 4 6 8 10 12 14

Fig. 8.8. Test results showing the export output (scaled values) for 13 MNC’s with
respect to the desired values

8.2.2 Hints and Tips to Design EvoNF Architecture

e Incorporate prior knowledge to minimize the number of layers. This will
reduce the computational complexity and development time.

e The learning parameter layer could be the first to abolish. By prefixing
a low learning rate, we could almost ensure proper meta-learning perfor-
mance.
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e For many function approximation problems, Takagi-Sugeno inference
method seems to work very well compared to a Mamdani inference system.

e Computational complexity could be minimized by selecting an appropriate
initial rule base which has also minimal number of rules. Instead of the grid
partition method, other partition methods (tree partition, scatter partition
etc.) could be explored.

e For most function approximation problems Gaussian membership func-
tions seems to work very well. In most cases it is not worth to explore
more than 3 membership functions for an input variable.

e Adequate genotype representation of the different layers is very important.
Try to use simple representation as much as possible.

o It is efficient to start with a high mutation rate (as high as 0.80) and let the
adaptive algorithm pick up the mutation rate according to the generated
error.

In the following section we present an extension of the EvoNF architecture
discussed in Sect. 8.2. The advanced hybrid framework uses a fuzzy c-means
algorithm to segregate the data and a fuzzy inference system for data mining
purposes. The parameters of the fuzzy c-means algorithm and the fuzzy in-
ference system are represented in hierarchical layers and are optimized using
evolutionary algorithm and gradient decent method.

8.3 Hybrid Fuzzy Clustering
and Fuzzy Inference Method for Data Mining

8.3.1 Fuzzy Clustering Algorithm

One of the widely used clustering methods is the fuzzy c-means (FCM) al-
gorithm developed by Bezdek [9]. FCM partitions a collection of n vectors
;1 =1,2...,n into ¢ fuzzy groups and finds a cluster center in each group
such that a cost function of dissimilarity measure is minimized. To accom-
modate the introduction of fuzzy partitioning, the membership matrix U is
allowed to have elements with values between 0 and 1. The FCM objective
function takes the form

J(U,c1,...cc) = iJi = iiuzdz
i=1

i=1 j=1

Where u;;, is a numerical value between [0,1]; ¢; is the cluster center of
fuzzy group i; d;j = ||¢; — x| is the Euclidian distance between ith cluster
center and jth data point; and m is called the exponential weight which influ-
ences the degree of fuzziness of the membership (partition) matrix. For every
data object the sum of membership values with all the associated clusters
should add up to one.
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8.3.2 Optimization of Fuzzy Clustering Algorithm

Optimization of usually a number of cluster centers are randomly initialized
and the FCM algorithm provides an iterative approach to approximate the
minimum of the objective function starting from a given position and leads to
any of its local minima. No guarantee ensures that FCM converges to an op-
timum solution (can be trapped by local extrema in the process of optimizing
the clustering criterion). The performance is very sensitive to initialization of
the cluster centers. An evolutionary algorithm is used to decide the optimal
number of clusters and their cluster centers. The algorithm is initialized by
constraining the initial values to be within the space defined by the vectors
to be clustered. A very similar approach is used by Hall et al. [12] and [3].

8.3.3 Intelligent Miner (i-Miner) Framework for Web Mining

We propose an integrated framework (i-Miner) which optimizes the FCM us-
ing an evolutionary algorithm and a Takagi-Sugeno fuzzy inference system
using a combination of evolutionary algorithm and neural network learning
[1, 3]. The developed framework is used for a Web usage mining problem.
Web usage mining attempts to discover useful knowledge from the secondary
data obtained from the interactions of the users with the Web. The rapid
e-commerce growth has made both business community and customers face
a new situation. Due to intense competition on one hand and the customer’s
option to choose from several alternatives business community has realized
the necessity of intelligent marketing strategies and relationship management.
Web usage mining has become very critical for effective Web site management,
creating adaptive Web sites, business and support services, personalization,
network traffic flow analysis and so on. We present how the (i-Miner) approach
could be used to optimize the concurrent architecture of a fuzzy clustering al-
gorithm (to discover web data clusters) and a fuzzy inference system to ana-
lyze the Web site visitor trends. Figure 8.9 illustrates the i-Miner framework.
A hybrid evolutionary FCM algorithm is used to optimally segregate similar
user interests. The clustered data is then used to analyze the trends using a
Takagi-Sugeno fuzzy inference system learned using EvoNF approach.

In Web usage mining, data pre-processing involves mundane tasks such
as merging multiple server logs into a central location and parsing the log
into data fields followed by data cleaning. Graphic file requests, agent/spider
crawling etc. could be easily removed by only looking for HTML file requests.
Normalization of URL’s is often required to make the requests consistent. For
example requests for www.okstate.edu and www.okstate.edu/index.html, are
all for the same file. All these tasks could be achieved by conventional hard
computing techniques which involves text processing, string matching, asso-
ciation rules, simple statistical measures etc. The cleaned and pre-processed
raw data from the log files is used by evolutionary FCM algorithm to identify
the optimal number of clusters and their centers. The developed clusters of
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Fig. 8.9. i-Miner framework for Web usage mining

data are fed to a Takagi-Sugeno fuzzy inference system to analyze the Web
server access trend patterns. The if-then rule structures are learned using an
iterative learning procedure [10] by an evolutionary algorithm and the rule
parameters are fine-tuned using gradient decent algorithm. The hierarchical
distribution of i-Miner is depicted in Fig. 8.10. The arrow direction indicates
the hierarchy of the evolutionary search. In simple words, the optimization
of clustering algorithm progresses at a faster time scale at the lowest level in
an environment decided by the fuzzy inference system and the problem envi-

/ Pattern discovery and trend analysis \

-

Optimization of fuzzy inference system \

Optimization of clustering algorithm \
O -

(no of clusters, optimal centers etc.) )

szy operators, rules, antecedent and consequent parameters)/

K (usage patterns, association rules and forecasts etc.) /

Fig. 8.10. Hierarchical architecture of i-Miner
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Fig. 8.11. Chromosome structure of the i-Miner

ronment. The evolution (optimization) of the fuzzy inference system proceeds
at a slower time scale at a higher level with respect to the fuzzy clustering
algorithm.

8.3.4 Chromosome Modelling and Representation

Hierarchical evolutionary search process has to be represented in a chromo-
some for successful modelling of the i-Miner framework. A typical chromosome
of the i-Miner would appear as shown in Fig. 8.11 and the detailed modelling
process is as follows.

Layer 1. The optimal number of clusters and initial cluster centers is
represented this layer.

Layer 2. This layer is responsible for the optimization of the rule base
(same function defined in Fig. 8.3). We used the grid-partitioning algorithm to
generate the initial set of rules. An iterative learning method is then adopted
to optimize the rules. The existing rules are mutated and new rules are in-
troduced. The fitness of a rule is given by its contribution (strength) to the
actual output. To represent a single rule a position dependent code with as
many elements as the number of variables of the system is used.

Layer 3. This layer is responsible for the selection of optimal learning
parameters. Performance of the gradient descent algorithm directly depends
on the learning rate according to the error surface. The optimal learning
parameters decided by this layer will be used to tune the parameterized rule
antecedents/consequents and the fuzzy operators. In the i-Miner approach,
rule antecedent/consequent parameters and the fuzzy operators are fine tuned
using a gradient descent algorithm to minimize the output error

N
E= (dk — xk.)2 (8.1)
k=1
where dj is the kth component of the rth desired output vector and xj is

the kth component of the actual output vector by presenting the rth input
vector to the network. The gradients of the rule parameters to be optimized,
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namely the consequent parameters (P,) 3 P for all rules R, and the premise

parameters a E and BE for all fuzzy sets F (a and c represents the MF width
and center of a Gausman MF)are to be computed. As far as rule parameter
learning is concerned, the key difference between i-Miner and the EvoNF
approach is in the way the consequent parameters were determined.

Once the three layers are represented in a chromosome structure C, then
the learning procedure could be initiated as defined in Sect. 8.2.

8.3.5 Application of i-Miner: Web Usage Mining

The hybrid framework described in Sect. 8.3 was used for Web usage mining
[1]. The statistical/text data generated by the log file analyzer from 1 January
2002 to 7 July 2002. Selecting useful data is an important task in the data pre-
processing block. After some preliminary analysis, we selected the statistical
data comprising of domain byte requests, hourly page requests and daily page
requests as focus of the cluster models for finding Web users’ usage patterns.
It is also important to remove irrelevant and noisy data in order to build
a precise model. We also included an additional input “index number” to
distinguish the time sequence of the data. The most recently accessed data
were indexed higher while the least recently accessed data were placed at
the bottom. Besides the inputs “volume of requests” and “ volume of pages
(bytes)” and “index number”, we also used the “cluster information” provided
by the clustering algorithm as an additional input variable. The data was re-
indexed based on the cluster information. Our task is to predict the Web traffic
volume on a hourly and daily basis. We used the data from 17 February 2002
to 30 June 2002 for training and the data from 1 July 2002 to 6 July 2002 for
testing and validation purposes.

The performance is compared with self-organizing maps (alternative for
FCM) and several function approximation techniques like neural networks,
linear genetic programming and Takagi-Sugeno fuzzy inference system (to
predict the trends). The results are graphically illustrated and the practical
significance is discussed in detail.

The initial populations were randomly created based on the parameters
shown in Table 8.3. Choosing good reproduction operator values is often a
challenging task. We used a special mutation operator, which decreases the
mutation rate as the algorithm greedily proceeds in the search space [3]. If the
allelic value x; of the ith gene ranges over the domain a; and b; the mutated
gene z; is drawn randomly uniformly from the interval [a;, b;].

o $1+A(t,blfl'z), sz:O
T \ai+ Altywi—ai), ifw=1

where w represents an unbiased coin flip p(w = 0) = p(w = 1) = 0.5, and

Alt,z) == (1 — (1- ﬁ)b) (8.3)
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Table 8.3. Parameter settings of i-Miner

Population Size 30

Maximum no of generations 35

Fuzzy inference system Takagi Sugeno

Rule antecedent membership functions 3 membership functions per input

Rule consequent parameters variable (parameterized Gaussian)
linear parameters

Gradient descent learning 10 epochs

Ranked based selection 0.50

Elitism 5%

Starting mutation rate 0.50

and t is the current generation and ¢4, is the maximum number of genera-
tions. The function A computes a value in the range [0, 2] such that the prob-
ability of returning a number close to zero increases as the algorithm proceeds
with the search. The parameter b determines the impact of time on the prob-
ability distribution A over [0, z]. Large values of b decrease the likelihood of
large mutations in a small number of generations. The parameters mentioned
in Table 8.3 were decided after a few trial and error approaches (basically by
monitoring the algorithm convergence and the output error measures). Ex-
periments were repeated 3 times and the average performance measures are
reported. Figures 8.12 and 8.13 illustrates the meta-learning approach com-
bining evolutionary learning and gradient descent technique during the 35
generations.

i - Miner training performance

o
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..11”.“16.....21...‘.26.....31.

—+— One day ahead trends —— average hourly trends Evolutionary learning (no. of generations)

0

Fig. 8.12. Meta-learning performance (training) of i-Miner

Table 8.4 summarizes the performance of the developed i-Miner for train-
ing and test data. i-Miner trend prediction performance is compared with
ANFIS [13], Artificial Neural Network (ANN) and Linear Genetic Program-
ming (LGP). The Correlation Coefficient (CC) for the test data set is also
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Fig. 8.13. Meta-learning performance (testing) of i-Miner

Table 8.4. Performance of the different paradigms
Period
Daily (1 day ahead) Hourly (1 hour ahead)
RMSE RMSE
Method Train Test CcC Train Test CC

i-Miner 0.0044  0.0053 0.9967  0.0012 0.0041 0.9981
ANFIS 0.0176 0.0402 0.9953 0.0433  0.0433  0.9841
ANN 0.0345 0.0481 0.9292 0.0546  0.0639  0.9493
LGP 0.0543 0.0749 0.9315 0.0654  0.0516 0.9446

given in Table 8.4. The 35 generations of meta-learning approach created
62 if-then Takagi-Sugeno type fuzzy rules (daily traffic trends) and 64 rules
(hourly traffic trends) compared to the 81 rules reported in [26] using ANFIS
[13]. Figures 8.14 and 8.15 illustrate the actual and predicted trends for the
test data set. A trend line is also plotted using a least squares fit (6th order
polynomial). Empirical results clearly show that the proposed Web usage-
mining framework (i-Miner) is efficient.

As shown in Fig. 8.16, Evolutionary FCM approach created 7 data clus-
ters for the average hourly traffic according to the input features compared
to 9 data clusters for the daily Web traffic (Fig. 8.17). The previous study
using Self-organizing Map (SOM) created 7 data clusters for daily Web traffic
and 4 data clusters for hourly Web traffic respectively. Evolutionary FCM
approach resulted in the formation of additional data clusters.

Several meaningful information could be obtained from the clustered data.
Depending on the no of visitors from a particular domain, time and day of
access etc. data clusters were formulated. Clusters based on hourly data show
the visitor information at certain hour of the day. Some clusters accounted for
the visitors during the peak hour and certain weekdays and so on. For example,
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Fig. 8.15. Test results of the average hourly trends for 6 days

1

Most of the hints and tips given for the design of EvoNF is applicable for

i-Miner.
Data pre-processing is an important issue for optimal performance. In most

cases, normalization or scaling would suffice.
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on the knowledge discovered from the data clusters is beyond the scope of this

chapter.
8.3.6 Hints and Tips

cluster developed using the evolutionary FCM approach. Detailed discussion
[}

Fig. 8.18 depicts



A. Abraham

176

x 10

oW > a110)

g 0 O @umO
T o
8t O O GDAIWO0O

@
3+ © comaed
=0
5% QERIID QO @O
£3 O CURIDp GO
O e O OQIAID A O 00

O COmMOOOO®O O
0@ 000 WO O
apowo o ooom O
ocomm &» ®® 0o O
ocom 00 0O @ O
o @ @O ©O® O

o@m ©®OO ® O O

0 O® @@OO0 O
QoD GO

N~ © w < (2] [aV)
sisanbal jo swn|opn

25

20

15

10

Hour of the day

Fig. 8.16. FCM clustering of hourly Web traffic

o@D @ O

ar
T
o€
o
wm @ @D [e]eus]e} o 1
S
29
© 2
o
Oe °
OO 0D O OO0O® o 1
.
.
°
O 00O O GO 1
.
.
o o@D 000 00 o 1
O O oO@» @@ 0O O o o 1
[ty)
o
—
X1 1 1 1 1 1 | qeszeen-L 1
[ee] o < [§\] o [ee] © < N o
— — — — —

sisanbal Jo awn|oA

Day of the week

Fig. 8.17. FCM clustering of daily Web traffic



8 Evolving Intelligence in Hierarchical Layers 177

2800000+
m2450000*
S 2100000
£ 1750000
> 1400000+
£

3 1050000+
T 700000

350000 H

ol 0w _Ho ol =l 5 Heflco=_ 0 Hosll

33T 3IIESTPREEIESEREZIERSEERZIRIZIEE R

8 233 E8 g EE22Es 2Pt 2 E22EEE S8 22

2 8 ® g % € 0 8 - 6 & 6 &£ 4 £ 4 6 38 8 £ 6 3838 8% g ®w G 3

g o s £ 28 g8 35 o § 2 © 5 ¢ 8 8 5 588 £ € 98 o & <

s g 2 2 g £ o T 2 S © 28 T 2 0 35 2B g8 g g =

E & = 5 = 2 & 2z & £ 2 £ 8 3 e 35 E § 3

g £ 5 2 3 e 3 & E s © c £ S 3 2

= B X a o c 2 S > S E < S

g g © < ° 5 ©

< £ o .
g 2 Domain names

Fig. 8.18. Hourly visitor information according to the domain names from an FCM
cluster

8.4 Conclusions

This chapter has presented some of the architectures of hybrid intelligent
systems involving fuzzy clustering algorithms, neural network learning, fuzzy
inference systems and evolutionary computation. The key idea was to demon-
strate the evolution of intelligence in hierarchical layers. The developed hybrid
intelligent systems were applied to two real world applications illustrating the
importance of such complicated approaches. For the two applications consid-
ered, the hybrid models performed better than the individual approaches. We
were able to improve the performance (low RMSE and high CC) and at the
same time we were able to substantially reduce the number of rules. Hence
these approaches might be extremely useful for hardware implementations.
The hybrid intelligent systems has many important practical applications
in science, technology, business and commercial. Compared to the individual
intelligent constituents hybrid intelligent frameworks are relatively young. As
the strengths and weakness of different hybrid architectures are understood,
it will be possible to use them more efficiently to solve real world problems.
Integration issues range from different techniques and theories of computa-
tion to problems of exactly how best to implement hybrid systems. Like most
biological systems which can adapt to any environment, adaptable intelligent
systems are required to tackle future complex problems involving huge data
volume. Most of the existing hybrid soft computing frameworks rely on sev-
eral user specified network parameters. For the system to be fully adaptable,
performance should not be heavily dependant on user-specified parameters.
The real success in modelling the proposed hybrid architectures will di-
rectly depend on the genotype representation of the different layers. The
population-based collective learning process, self-adaptation, and robustness
are some of the key features. Evolutionary algorithms attract considerable
computational effort especially for problems involving complexity and huge
data volume. Fortunately, evolutionary algorithms work with a population of
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independent solutions, which makes it easy to distribute the computational
load among several processors.
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