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Evolutionary computation, offers practical advantages to the researcher facing
difficult optimization problems. These advantages are multi-fold, including the
simplicity of the approach, its robust response to changing circumstance, its
flexibility, and many other facets. The evolutionary approach can be applied
to problems where heuristic solutions are not available or generally lead to
unsatisfactory results. As a result, evolutionary computation have received
increased interest, particularly with regards to the manner in which they may
be applied for practical problem solving.

In this chapter, we review the development of the field of evolutionary com-
putations from standard genetic algorithms to genetic programming, passing
by evolution strategies and evolutionary programming. For each of these orien-
tations, we identify the main differences from the others. We also, describe the
most popular variants of genetic programming. These include linear genetic
programming (LGP), gene expression programming (GEP), multi-expresson
programming (MEP), Cartesian genetic programming (CGP), traceless ge-
netic programming (TGP), gramatical evolution (GE) and genetic glgorithm
for deriving software (GADS).
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1.1 Introduction

In nature, evolution is mostly determined by natural selection or different
individuals competing for resources in the environment. Those individuals
that are better are more likely to survive and propagate their genetic material.
The encoding for genetic information (genome) is done in a way that admits
asexual reproduction which results in offspring that are genetically identical
to the parent. Sexual reproduction allows some exchange and re-ordering of
chromosomes, producing offspring that contain a combination of information
from each parent. This is the recombination operation, which is often referred
to as crossover because of the way strands of chromosomes cross over during
the exchange. The diversity in the population is achieved by mutation.

Evolutionary algorithms are ubiquitous nowadays, having been success-
fully applied to numerous problems from different domains, including op-
timization, automatic programming, machine learning, operations research,
bioinformatics, and social systems. In many cases the mathematical function,
which describes the problem is not known and the values at certain parame-
ters are obtained from simulations. In contrast to many other optimization
techniques an important advantage of evolutionary algorithms is they can
cope with multi-modal functions.

Usually grouped under the term evolutionary computation [1] or evolu-
tionary algorithms, we find the domains of genetic algorithms [9], evolution
strategies [17, 19], evolutionary programming [5] and genetic programming
[11]. They all share a common conceptual base of simulating the evolution
of individual structures via processes of selection, mutation, and reproduc-
tion. The processes depend on the perceived performance of the individual
structures as defined by the problem.

A population of candidate solutions (for the optimization task to be solved)
is initialized. New solutions are created by applying reproduction operators
(mutation and/or crossover). The fitness (how good the solutions are) of the
resulting solutions are evaluated and suitable selection strategy is then applied
to determine which solutions will be maintained into the next generation. The
procedure is then iterated and is illustrated in Fig. 1.1.

Replacement

Reproduction

Selection
Population Parents

Offspring

Fig. 1.1. Flow chart of an evolutionary algorithm
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1.1.1 Advantages of Evolutionary Algorithms

A primary advantage of evolutionary computation is that it is conceptually
simple. The procedure may be written as difference equation (1.1):

x[t + 1] = s(v(x[t])) (1.1)

where x[t] is the population at time t under a representation x, v is a
random variation operator, and s is the selection operator [6].

Other advantages can be listed as follows:

• Evolutionary algorithm performance is representation independent, in con-
trast with other numerical techniques, which might be applicable for only
continuous values or other constrained sets.

• Evolutionary algorithms offer a framework such that it is comparably easy
to incorporate prior knowledge about the problem. Incorporating such in-
formation focuses the evolutionary search, yielding a more efficient explo-
ration of the state space of possible solutions.

• Evolutionary algorithms can also be combined with more traditional op-
timization techniques. This may be as simple as the use of a gradient
minimization used after primary search with an evolutionary algorithm
(for example fine tuning of weights of a evolutionary neural network), or it
may involve simultaneous application of other algorithms (e.g., hybridiz-
ing with simulated annealing or tabu search to improve the efficiency of
basic evolutionary search).

• The evaluation of each solution can be handled in parallel and only selec-
tion (which requires at least pair wise competition) requires some serial
processing. Implicit parallelism is not possible in many global optimization
algorithms like simulated annealing and Tabu search.

• Traditional methods of optimization are not robust to dynamic changes in
problem the environment and often require a complete restart in order to
provide a solution (e.g., dynamic programming). In contrast, evolutionary
algorithms can be used to adapt solutions to changing circumstance.

• Perhaps the greatest advantage of evolutionary algorithms comes from
the ability to address problems for which there are no human experts.
Although human expertise should be used when it is available, it often
proves less than adequate for automating problem-solving routines.

1.2 Genetic Algorithms

A typical flowchart of a Genetic Algorithm (GA) is depicted in Fig. 1.2. One
iteration of the algorithm is referred to as a generation. The basic GA is
very generic and there are many aspects that can be implemented differently
according to the problem (For instance, representation of solution or chromo-
somes, type of encoding, selection strategy, type of crossover and mutation
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operators, etc.) In practice, GAs are implemented by having arrays of bits or
characters to represent the chromosomes. The individuals in the population
then go through a process of simulated evolution. Simple bit manipulation
operations allow the implementation of crossover, mutation and other opera-
tions. The number of bits for every gene (parameter) and the decimal range in
which they decode are usually the same but nothing precludes the utilization
of a different number of bits or range for every gene.

Initialize Population

Evaluate Fitness

Solution

Found?

End

Selection

Reproduction

yes

no

Fig. 1.2. Flow chart of basic genetic algorithm iteration

When compared to other evolutionary algorithms, one of the most im-
portant GA feature is its focus on fixed-length character strings although
variable-length strings and other structures have been used.

1.2.1 Encoding and Decoding

In a typical application of GA’s, the given problem is transformed into a set
of genetic characteristics (parameters to be optimized) that will survive in the
best possible manner in the environment. Example, if the task is to optimize
the function given in 1.2.

min f(x1, x2) = (x1 − 5)2 + (x2 − 2)2,−3 ≤ x1 ≤ 3, −8 ≤ x2 ≤ 8 (1.2)
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The parameters of the search are identified as x1 and x2, which are called
the phenotypes in evolutionary algorithms. In genetic algorithms, the phe-
notypes (parameters) are usually converted to genotypes by using a coding
procedure. Knowing the ranges of x1 and x2 each variable is to be represented
using a suitable binary string. This representation using binary coding makes
the parametric space independent of the type of variables used. The genotype
(chromosome) should in some way contain information about solution, which
is also known as encoding. GA’s use a binary string encoding as shown below.

Chromosome A: 110110111110100110110
Chromosome B: 110111101010100011110

Each bit in the chromosome strings can represent some characteristic of
the solution. There are several types of encoding (example, direct integer or
real numbers encoding). The encoding depends directly on the problem.

Permutation encoding can be used in ordering problems, such as Travelling
Salesman Problem (TSP) or task ordering problem. In permutation encoding,
every chromosome is a string of numbers, which represents number in a se-
quence. A chromosome using permutation encoding for a 9 city TSP problem
will look like as follows:

Chromosome A: 4 5 3 2 6 1 7 8 9
Chromosome B: 8 5 6 7 2 3 1 4 9

Chromosome represents order of cities, in which salesman will visit them.
Special care is to taken to ensure that the strings represent real sequences
after crossover and mutation. Floating-point representation is very useful for
numeric optimization (example: for encoding the weights of a neural network).
It should be noted that in many recent applications more sophisticated geno-
types are appearing (example: chromosome can be a tree of symbols, or is a
combination of a string and a tree, some parts of the chromosome are not
allowed to evolve etc.)

1.2.2 Schema Theorem and Selection Strategies

Theoretical foundations of evolutionary algorithms can be partially explained
by schema theorem [9], which relies on the concept of schemata. Schemata
are templates that partially specify a solution (more strictly, a solution in the
genotype space). If genotypes are strings built using symbols from an alphabet
A, schemata are strings whose symbols belong to A ∪ {∗}. This extra-symbol
* must be interpreted as a wildcard, being loci occupied by it called undefined.
A chromosome is said to match a schema if they agree in the defined positions.

For example, the string 10011010 matches the schemata 1******* and
**011*** among others, but does not match *1*11*** because they differ in
the second gene (the first defined gene in the schema). A schema can be viewed
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as a hyper-plane in a k-dimensional space representing a set of solutions with
common properties. Obviously, the number of solutions that match a schema
H depend on the number of defined positions in it. Another related concept is
the defining-length of a schema, defined as the distance between the first and
the last defined positions in it. The GA works by allocating strings to best
schemata exponentially through successive generations, being the selection
mechanism the main responsible for this behaviour. On the other hand the
crossover operator is responsible for exploring new combinations of the present
schemata in order to get the fittest individuals. Finally the purpose of the
mutation operator is to introduce fresh genotypic material in the population.

1.2.3 Reproduction Operators

Individuals for producing offspring are chosen using a selection strategy after
evaluating the fitness value of each individual in the selection pool. Each
individual in the selection pool receives a reproduction probability depending
on its own fitness value and the fitness value of all other individuals in the
selection pool. This fitness is used for the actual selection step afterwards.
Some of the popular selection schemes are discussed below.

Roulette Wheel Selection

The simplest selection scheme is roulette-wheel selection, also called stochastic
sampling with replacement. This technique is analogous to a roulette wheel
with each slice proportional in size to the fitness. The individuals are mapped
to contiguous segments of a line, such that each individual’s segment is equal
in size to its fitness. A random number is generated and the individual whose
segment spans the random number is selected. The process is repeated un-
til the desired number of individuals is obtained. As illustrated in Fig. 1.3,
chromosome1 has the highest probability for being selected since it has the
highest fitness.

Tournament Selection

In tournament selection a number of individuals is chosen randomly from the
population and the best individual from this group is selected as parent. This
process is repeated as often as individuals to choose. These selected parents
produce uniform at random offspring. The tournament size will often depend
on the problem, population size etc. The parameter for tournament selection
is the tournament size. Tournament size takes values ranging from 2 – number
of individuals in population.
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Chromosome1

Chromosome2

Chromosome3

Chromosome4

Chromosome5

Fig. 1.3. Roulette wheel selection

Elitism

When creating new population by crossover and mutation, we have a big
chance that we will lose the best chromosome. Elitism is name of the method
that first copies the best chromosome (or a few best chromosomes) to new
population. The rest is done in classical way. Elitism can very rapidly increase
performance of GA, because it prevents losing the best-found solution.

Genetic Operators

Crossover and mutation are two basic operators of GA. Performance of GA
very much depends on the genetic operators. Type and implementation of op-
erators depends on encoding and also on the problem. There are many ways
how to do crossover and mutation. In this section we will demonstrate some
of the popular methods with some examples and suggestions how to do it for
different encoding schemes.

Crossover. It selects genes from parent chromosomes and creates a new off-
spring. The simplest way to do this is to choose randomly some crossover
point and everything before this point is copied from the first parent and
then everything after a crossover point is copied from the second parent. A
single point crossover is illustrated as follows (| is the crossover point):

Chromosome A: 11111 | 00100110110
Chromosome B: 10011 | 11000011110

Offspring A: 11111 | 11000011110
Offspring B: 10011 | 00100110110

As illustrated in Fig. 1.4, there are several crossover techniques. In a uni-
form crossover bits are randomly copied from the first or from the second
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Uniform crossover

offspring1 offspring2

parent1 parent2

Two-point crossover

offspring1 offspring2

parent1 parent2

Single-point crossover

offspring1 offspring2

parent1 parent2

Fig. 1.4. Types of crossover operators

parent. Specific crossover made for a specific problem can improve the GA
performance.

Mutation. After crossover operation, mutation takes place. Mutation changes
randomly the new offspring. For binary encoding mutation is performed by
changing a few randomly chosen bits from 1 to 0 or from 0 to 1. Mutation
depends on the encoding as well as the crossover. For example when we are
encoding permutations, mutation could be exchanging two genes. A simple
mutation operation is illustrated as follows:

Chromosome A: 1101111000011110
Chromosome B: 1101100100110110
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Offspring A: 1100111000011110
Offspring B: 1101101100110110

For many optimization problems there may be multiple, equal, or unequal
optimal solutions. Sometimes a simple GA cannot maintain stable populations
at different optima of such functions. In the case of unequal optimal solutions,
the population invariably converges to the global optimum. Niching helps to
maintain subpopulations near global and local optima. A niche is viewed as
an organism’s environment and a species as a collection of organisms with
similar features. Niching helps to maintain subpopulations near global and
local optima by introducing a controlled competition among different solutions
near every local optimal region. Niching is achieved by a sharing function,
which creates subdivisions of the environment by degrading an organism’s
fitness proportional to the number of other members in its neighbourhood.
The amount of sharing contributed by each individual into its neighbour is
determined by their proximity in the decoded parameter space (phenotypic
sharing) based on a distance measure.

1.3 Evolution Strategies

Evolution Strategy (ES) was developed by Rechenberg [17] at Technical Uni-
versity, Berlin. ES tend to be used for empirical experiments that are difficult
to model mathematically. The system to be optimized is actually constructed
and ES is used to find the optimal parameter settings. Evolution strategies
merely concentrate on translating the fundamental mechanisms of biological
evolution for technical optimization problems. The parameters to be optimized
are often represented by a vector of real numbers (object parameters – op).
Another vector of real numbers defines the strategy parameters (sp) which
controls the mutation of the objective parameters. Both object and strategic
parameters form the data-structure for a single individual. A population P of
n individuals could be described as P = (c1, c2, . . . , cn−1, cn), where the ith
chromosome ci is defined as ci = (op, sp) with op = (o1, o2, ..., on−1, on) and
sp = (s1, s2, ..., sn−1, sn).

1.3.1 Mutation in Evolution Strategies

The mutation operator is defined as component wise addition of normal dis-
tributed random numbers. Both the objective parameters and the strategy
parameters of the chromosome are mutated. A mutant’s object-parameters
vector is calculated as op(mut) = op + N0(sp), where N0(si) is the Gaussian
distribution of mean-value 0 and standard deviation si. Usually the strategy
parameters mutation step size is done by adapting the standard deviation si.
For instance, this may be done by sp(mut) = (s1 × A1, s2 × A2, . . . , sn−1 ×
An−1, sn×An), where Ai is randomly chosen from α or 1/α depending on the
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value of equally distributed random variable E of [0,1] with Ai = α if E < 0.5
and Ai = 1/α if E ≥ 0.5. The parameter α is usually referred to as strategy
parameters adaptation value.

1.3.2 Crossover (Recombination) in Evolution Strategies

For two chromosomes c1 = (op(c1), sp(c1)) and c2 = (op(c2), sp(c2)) the
crossover operator is defined R(c1, c2) = c = (op, sp) with op(i) = (op(c1),
i|op(c2), i) and sp(i) = (sp(c1), i|sp(c2), i). By defining op(i) and sp(i) = (x|y)
a value is randomly assigned for either x or y (50% selection probability for
x and y).

1.3.3 Controling the Evolution

Let P be the number of parents in generation 1 and let C be the number of
children in generation i. There are basically four different types of evolution
strategies: P , C, P +C, P/R,C and P/R+C as discussed below. They mainly
differ in how the parents for the next generation are selected and the usage of
crossover operators.

P, C Strategy

The P parents produce C children using mutation. Fitness values are calcu-
lated for each of the C children and the best P children become next gener-
ation parents. The best individuals of C children are sorted by their fitness
value and the first P individuals are selected to be next generation parents
(C ≥ P ).

P + C Strategy

The P parents produce C children using mutation. Fitness values are calcu-
lated for each of the C children and the best P individuals of both parents and
children become next generation parents. Children and parents are sorted by
their fitness value and the first P individuals are selected to be next generation
parents.

P/R, C Strategy

The P parents produce C children using mutation and crossover. Fitness
values are calculated for each of the C children and the best P children become
next generation parents. The best individuals of C children are sorted by their
fitness value and the first P individuals are selected to be next generation
parents (C ≥ P ). Except the usage of crossover operator this is exactly the
same as P,C strategy.
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P/R + C Strategy

The P parents produce C children using mutation and recombination. Fitness
values are calculated for each of the C children and the best P individuals
of both parents and children become next generation parents. Children and
parents are sorted by their fitness value and the first P individuals are selected
to be next generation parents. Except the usage of crossover operator this is
exactly the same as P + C strategy.

1.4 Evolutionary Programming

Fogel, Owens and Walsh’s book [5] is the landmark publication for Evolution-
ary Programming (EP). In the book, Finite state automata are evolved to
predict symbol strings generated from Markov processes and non-stationary
time series. The basic evolutionary programming method involves the follow-
ing steps:

1. Choose an initial population (possible solutions at random). The number
of solutions in a population is highly relevant to the speed of optimiza-
tion, but no definite answers are available as to how many solutions are
appropriate (other than > 1) and how many solutions are just wasteful.

2. New offspring’s are created by mutation. Each offspring solution is as-
sessed by computing its fitness. Typically, a stochastic tournament is held
to determine N solutions to be retained for the population of solutions.
It should be noted that evolutionary programming method typically does
not use any crossover as a genetic operator.

When comparing evolutionary programming to genetic algorithm, one can
identify the following differences:

1. GA is implemented by having arrays of bits or characters to represent the
chromosomes. In EP there are no such restrictions for the representation.
In most cases the representation follows from the problem.

2. EP typically uses an adaptive mutation operator in which the severity
of mutations is often reduced as the global optimum is approached while
GA’s use a pre-fixed mutation operator. Among the schemes to adapt the
mutation step size, the most widely studied being the “meta-evolutionary”
technique in which the variance of the mutation distribution is subject to
mutation by a fixed variance mutation operator that evolves along with
the solution.

On the other hand, when comparing evolutionary programming to evolu-
tion strategies, one can identify the following differences:

1. When implemented to solve real-valued function optimization problems,
both typically operate on the real values themselves and use adaptive
reproduction operators.
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2. EP typically uses stochastic tournament selection while ES typically uses
deterministic selection.

3. EP does not use crossover operators while ES (P/R,C and P/R+C strate-
gies) uses crossover. However the effectiveness of the crossover operators
depends on the problem at hand.

1.5 Genetic Programming

Genetic Programming (GP) technique provides a framework for automatically
creating a working computer program from a high-level problem statement of
the problem [11]. Genetic programming achieves this goal of automatic pro-
gramming by genetically breeding a population of computer programs using
the principles of Darwinian natural selection and biologically inspired opera-
tions. The operations include most of the techniques discussed in the previous
sections. The main difference between genetic programming and genetic al-
gorithms is the representation of the solution. Genetic programming creates
computer programs in the LISP or scheme computer languages as the so-
lution. LISP is an acronym for LISt Processor and was developed by John
McCarthy in the late 1950s [8]. Unlike most languages, LISP is usually used
as an interpreted language. This means that, unlike compiled languages, an
interpreter can process and respond directly to programs written in LISP. The
main reason for choosing LISP to implement GP is due to the advantage of
having the programs and data have the same structure, which could provide
easy means for manipulation and evaluation.

Genetic programming is the extension of evolutionary learning into the
space of computer programs. In GP the individual population members are
not fixed length character strings that encode possible solutions to the problem
at hand, they are programs that, when executed, are the candidate solutions
to the problem. These programs are expressed in genetic programming as
parse trees, rather than as lines of code. For example, the simple program
“a + b ∗ f(4, a, c)” would be represented as shown in Fig. 1.5. The terminal
and function sets are also important components of genetic programming.
The terminal and function sets are the alphabet of the programs to be made.
The terminal set consists of the variables (example, a,b and c in Fig. 1.5) and
constants (example, 4 in Fig. 1.5).

The most common way of writing down a function with two arguments
is the infix notation. That is, the two arguments are connected with the
operation symbol between them as a + b or a ∗ b. A different method is
the prefix notation. Here the operation symbol is written down first, fol-
lowed by its required arguments as +ab or ∗ab. While this may be a bit
more difficult or just unusual for human eyes, it opens some advantages for
computational uses. The computer language LISP uses symbolic expressions
(or S-expressions) composed in prefix notation. Then a simple S-expression
could be (operator, argument) where operator is the name of a function and
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+

a *

b f

4 a c

Fig. 1.5. A simple tree structure of GP

argument can be either a constant or a variable or either another symbolic ex-
pression as (operator, argument(operator, argument)(operator, argument)).
Generally speaking, GP procedure could be summarized as follows:

• Generate an initial population of random compositions of the functions
and terminals of the problem;

• Compute the fitness values of each individual in the population ;
• Using some selection strategy and suitable reproduction operators produce

two offspring;
• Procedure is iterated until the required solution is found or the termination

conditions have reached (specified number of generations).

1.5.1 Computer Program Encoding

A parse tree is a structure that grasps the interpretation of a computer pro-
gram. Functions are written down as nodes, their arguments as leaves. A
subtree is the part of a tree that is under an inner node of this tree. If this
tree is cut out from its parent, the inner node becomes a root node and the
subtree is a valid tree of its own.

There is a close relationship between these parse trees and S-expression;
in fact these trees are just another way of writing down expressions. While
functions will be the nodes of the trees (or the operators in the S-expressions)
and can have other functions as their arguments, the leaves will be formed
by terminals, that is symbols that may not be further expanded. Terminals
can be variables, constants or specific actions that are to be performed. The
process of selecting the functions and terminals that are needed or useful for
finding a solution to a given problem is one of the key steps in GP. Evaluation
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of these structures is straightforward. Beginning at the root node, the values
of all sub-expressions (or subtrees) are computed, descending the tree down
to the leaves.

1.5.2 Reproduction of Computer Programs

The creation of an offspring from the crossover operation is accomplished
by deleting the crossover fragment of the first parent and then inserting the
crossover fragment of the second parent. The second offspring is produced in
a symmetric manner. A simple crossover operation is illustrated in Fig. 1.6.
In GP the crossover operation is implemented by taking randomly selected
sub trees in the individuals and exchanging them.

Fig. 1.6. Illustration of crossover operator

Mutation is another important feature of genetic programming. Two types
of mutations are commonly used. The simplest type is to replace a function
or a terminal by a function or a terminal respectively. In the second kind an
entire subtree can replace another subtree. Fig. 1.7 explains the concept of
mutation.

GP requires data structures that are easy to handle and evaluate and ro-
bust to structural manipulations. These are among the reasons why the class
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Fig. 1.7. Illustration of mutation operator in GP

of S-expressions was chosen to implement GP. The set of functions and termi-
nals that will be used in a specific problem has to be chosen carefully. If the
set of functions is not powerful enough, a solution may be very complex or
not to be found at all. Like in any evolutionary computation technique, the
generation of first population of individuals is important for successful imple-
mentation of GP. Some of the other factors that influence the performance of
the algorithm are the size of the population, percentage of individuals that
participate in the crossover/mutation, maximum depth for the initial individ-
uals and the maximum allowed depth for the generated offspring etc. Some
specific advantages of genetic programming are that no analytical knowledge
is needed and still could get accurate results. GP approach does scale with the
problem size. GP does impose restrictions on how the structure of solutions
should be formulated.

1.6 Variants of Genetic Programming

Several variants of GP could be seen in the literature. Some of them are Linear
Genetic Programming (LGP), Gene Expression Programming (GEP), Multi
Expression Programming (MEP), Cartesian Genetic Programming (CGP),
Traceless Genetic Programming (TGP) and Genetic Algorithm for Deriving
Software (GADS).
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1.6.1 Linear Genetic Programming

Linear genetic programming is a variant of the GP technique that acts on lin-
ear genomes [3]. Its main characteristics in comparison to tree-based GP lies in
that the evolvable units are not the expressions of a functional programming
language (like LISP), but the programs of an imperative language (like c/c
++). This can tremendously hasten the evolution process as, no matter how
an individual is initially represented, finally it always has to be represented
as a piece of machine code, as fitness evaluation requires physical execution
of the individuals. The basic unit of evolution here is a native machine code
instruction that runs on the floating-point processor unit (FPU). Since dif-
ferent instructions may have different sizes, here instructions are clubbed up
together to form instruction blocks of 32 bits each. The instruction blocks hold
one or more native machine code instructions, depending on the sizes of the
instructions. A crossover point can occur only between instructions and is pro-
hibited from occurring within an instruction. However the mutation operation
does not have any such restriction. LGP uses a specific linear representation
of computer programs. A LGP individual is represented by a variable length
sequence of simple C language instructions. Instructions operate on one or
two indexed variables (registers) r, or on constants c from predefined sets.

An important LGP parameter is the number of registers used by a chromo-
some. The number of registers is usually equal to the number of attributes of
the problem. If the problem has only one attribute, it is impossible to obtain
a complex expression such as the quartic polynomial. In that case we have to
use several supplementary registers. The number of supplementary registers
depends on the complexity of the expression being discovered. An inappro-
priate choice can have disastrous effects on the program being evolved. LGP
uses a modified steady-state algorithm. The initial population is randomly
generated. The settings of various linear genetic programming system para-
meters are of utmost importance for successful performance of the system. The
population space has been subdivided into multiple subpopulation or demes.
Migration of individuals among the subpopulations causes evolution of the en-
tire population. It helps to maintain diversity in the population, as migration
is restricted among the demes. Moreover, the tendency towards a bad local
minimum in one deme can be countered by other demes with better search
directions. The various LGP search parameters are the mutation frequency,
crossover frequency and the reproduction frequency: The crossover operator
acts by exchanging sequences of instructions between two tournament win-
ners. Steady state genetic programming approach was used to manage the
memory more effectively

1.6.2 Gene Expression Programming (GEP)

The individuals of gene expression programming are encoded in linear chro-
mosomes which are expressed or translated into expression trees (branched
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entities)[4]. Thus, in GEP, the genotype (the linear chromosomes) and the
phenotype (the expression trees) are different entities (both structurally and
functionally) that, nevertheless, work together forming an indivisible whole. In
contrast to its analogous cellular gene expression, GEP is rather simple. The
main players in GEP are only two: the chromosomes and the Expression Trees
(ETs), being the latter the expression of the genetic information encoded in
the chromosomes. As in nature, the process of information decoding is called
translation. And this translation implies obviously a kind of code and a set
of rules. The genetic code is very simple: a one-to-one relationship between
the symbols of the chromosome and the functions or terminals they repre-
sent. The rules are also very simple: they determine the spatial organization
of the functions and terminals in the ETs and the type of interaction between
sub-ETs. GEP uses linear chromosomes that store expressions in breadth-first
form. A GEP gene is a string of terminal and function symbols. GEP genes are
composed of a head and a tail. The head contains both function and terminal
symbols. The tail may contain terminal symbols only. For each problem the
head length (denoted h) is chosen by the user. The tail length (denoted by t)
is evaluated by:

t = (n − 1)h + 1, (1.3)

where nis the number of arguments of the function with more arguments.
GEP genes may be linked by a function symbol in order to obtain a fully

functional chromosome. GEP uses mutation, recombination and transposi-
tion. GEP uses a generational algorithm. The initial population is randomly
generated. The following steps are repeated until a termination criterion is
reached: A fixed number of the best individuals enter the next generation
(elitism). The mating pool is filled by using binary tournament selection. The
individuals from the mating pool are randomly paired and recombined. Two
offspring are obtained by recombining two parents. The offspring are mutated
and they enter the next generation.

1.6.3 Multi Expression Programming

A GP chromosome generally encodes a single expression (computer program).
A Multi Expression Programming (MEP) chromosome encodes several expres-
sions [14]. The best of the encoded solution is chosen to represent the chromo-
some. The MEP chromosome has some advantages over the single-expression
chromosome especially when the complexity of the target expression is not
known. This feature also acts as a provider of variable-length expressions.
MEP genes are represented by substrings of a variable length. The number
of genes per chromosome is constant. This number defines the length of the
chromosome. Each gene encodes a terminal or a function symbol. A gene that
encodes a function includes pointers towards the function arguments. Func-
tion arguments always have indices of lower values than the position of the
function itself in the chromosome.
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The proposed representation ensures that no cycle arises while the chro-
mosome is decoded (phenotypically transcripted). According to the proposed
representation scheme, the first symbol of the chromosome must be a terminal
symbol. In this way, only syntactically correct programs (MEP individuals)
are obtained. The maximum number of symbols in MEP chromosome is given
by the formula:

Number of Symbols = (n + 1) × (Number of Genes − 1) + 1, (1.4)

where n is the number of arguments of the function with the greatest num-
ber of arguments. The translation of a MEP chromosome into a computer
program represents the phenotypic transcription of the MEP chromosomes.
Phenotypic translation is obtained by parsing the chromosome top-down. A
terminal symbol specifies a simple expression. A function symbol specifies
a complex expression obtained by connecting the operands specified by the
argument positions with the current function symbol.

Due to its multi expression representation, each MEP chromosome may
be viewed as a forest of trees rather than as a single tree, which is the case of
Genetic Programming.

1.6.4 Cartesian Genetic Programming

Cartesian Genetic Programming ( CGP) uses a network of nodes (indexed
graph) to achieve an input to output mapping [13]. Each node consists of a
number of inputs, these being used as parameters in a determined mathe-
matical or logical function to create the node output. The functionality and
connectivity of the nodes are stored as a string of numbers (the genotype)
and evolved to achieve the optimum mapping. The genotype is then mapped
to an indexed graph that can be executed as a program.

In CGP there are very large number of genotypes that map to identi-
cal genotypes due to the presence of a large amount of redundancy. Firstly
there is node redundancy that is caused by genes associated with nodes that
are not part of the connected graph representing the program. Another form
of redundancy in CGP, also present in all other forms of GP is, functional
redundancy.

1.6.5 Traceless Genetic Programming ( TGP)

The main difference between Traceless Genetic Programming and GP is that
TGP does not explicitly store the evolved computer programs [15]. TGP is
useful when the trace (the way in which the results are obtained) between the
input and output is not important. TGP uses two genetic operators: crossover
and insertion. The insertion operator is useful when the population contains
individuals representing very complex expressions that cannot improve the
search.
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1.6.6 Grammatical Evolution

Grammatical evolution [18] is a grammar-based, linear genome system. In
grammatical evolution, the Backus Naur Form (BNF) specification of a lan-
guage is used to describe the output produced by the system (a compilable
code fragment). Different BNF grammars can be used to produce code auto-
matically in any language. The genotype is a string of eight-bit binary numbers
generated at random and treated as integer values from 0 to 255. The phe-
notype is a running computer program generated by a genotype-phenotype
mapping process. The genotype-phenotype mapping in grammatical evolution
is deterministic because each individual is always mapped to the same pheno-
type. In grammatical evolution, standard genetic algorithms are applied to the
different genotypes in a population using the typical crossover and mutation
operators.

1.6.7 Genetic Algorithm for Deriving Software (GADS)

Genetic algorithm for deriving software is a GP technique where the genotype
is distinct from the phenotype [16]. The GADS genotype is a list of integers
representing productions in a syntax. This is used to generate the phenotype,
which is a program in the language defined by the syntax. Syntactically in-
valid phenotypes cannot be generated, though there may be phenotypes with
residual nonterminals.

1.7 Summary

This chapter presented the biological motivation and fundamental aspects of
evolutionary algorithms and its constituents, namely genetic algorithm, evo-
lution strategies, evolutionary programming and genetic programming. Most
popular variants of genetic programming are introduced. Important advan-
tages of evolutionary computation while compared to classical optimization
techniques are also discussed.
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