
670 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009

On Stability of the Chemotactic Dynamics in
Bacterial-Foraging Optimization Algorithm

Swagatam Das, Sambarta Dasgupta, Arijit Biswas,
Ajith Abraham, Senior Member, IEEE, and

Amit Konar, Member, IEEE

Abstract—Bacterial-foraging optimization algorithm (BFOA) attempts
to model the individual and group behavior of E.Coli bacteria as a dis-
tributed optimization process. Since its inception, BFOA has been finding
many important applications in real-world optimization problems from
diverse domains of science and engineering. One key step in BFOA is the
computational chemotaxis, where a bacterium (which models a candidate
solution of the optimization problem) takes steps over the foraging land-
scape in order to reach regions with high-nutrient content (corresponding
to higher fitness). The simulated chemotactic movement of a bacterium
may be viewed as a guided random walk or a kind of stochastic hill
climbing from the viewpoint of optimization theory. In this paper, we first
derive a mathematical model for the chemotactic movements of an arti-
ficial bacterium living in continuous time. The stability and convergence-
behavior of the said dynamics is then analyzed in the light of Lyapunov
stability theorems. The analysis indicates the necessary bounds on the
chemotactic step-height parameter that avoids limit cycles and guarantees
convergence of the bacterial dynamics into an isolated optimum. Illustra-
tive examples as well as simulation results have been provided in order to
support the analytical treatments.

Index Terms—Bacterial foraging, biological systems, computational
chemotaxis, limit cycles, stability analysis.

NOMENCLATURE

p Dimension of the search space.
S Total number of bacteria in the population.
Nc Number of chemotactic steps.
Ns Swimming length.
Nre Number of reproduction steps.
Ned Number of elimination–dispersal events.
Ped Elimination–dispersal probability,
C(i) Size of the step taken in the random direction specified by the

tumble.

I. INTRODUCTION

For over the last five decades, metaheuristics like genetic algo-
rithms (GAs) [1], [2], evolutionary programming [3], and evolution-
ary strategies [4], which draw their inspiration from evolution and
natural genetics, have been dominating the realm of optimization
algorithms. Recently, algorithms like particle swarm optimization
(PSO) [5] and ant-colony optimization (ACO) [6], mimicking the

Manuscript received May 3, 2008; revised October 7, 2008. First published
February 6, 2009; current version published April 17, 2009. This paper was
recommended by Associate Editor J. Wu.

S. Das, S. Dasgupta, A. Biswas, and A. Konar are with the Department
of Electronics and Telecommunication Engineering, Jadavpur University,
Kolkata 700 032, India (e-mail: swagatamdas19@yahoo.co.in; sambartadg@
gmail.com; arijitbiswas87@gmail.com; amitkonar_2030@rediffmail.com).

A. Abraham is with the Centre of Excellence for Quantifiable Quality of
Service in Communication Systems, Centre of Excellence, Norwegian Uni-
versity of Science and Technology, 7491 Trondheim, Norway, and also with
the Machine Intelligence Research Labs (MIR Labs), Scientific Network for
Innovation and Research Excellence, Auburn, WA 98071 USA (e-mail: ajith.
abraham@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCA.2008.2011474

collective behavior of social insects, have found their way into this
domain and proved their effectiveness in solving several engineering
optimization problems [7]. Following the same trend of nature-
inspired computing, Passino et al. [8], [9] proposed the bacterial-
foraging optimization algorithm (BFOA) in 2002. Unlike the classical
evolutionary techniques, BFOA is based on the foraging theory of nat-
ural creatures that try to optimize (maximize) their energy intake per
unit time spent for foraging, considering all the constraints presented
by their own physiology, such as sensing and cognitive capabilities,
and environment (e.g., density of prey, risks from predators, physical
characteristics of the search space). Although BFOA has certain char-
acteristics analogous to an evolutionary algorithm [8, p. 63], it is not
directly connected to Darwinian evolution and natural genetics, which
formed the basis of the GA-type algorithms in the early 1970s. To date,
the algorithm has successfully been applied to several real-life prob-
lems like optimal controller design [8], [10], harmonic estimation [11],
transmission-loss reduction [12], active-power-filter synthesis [13],
and machine learning [14]. On the algorithmic front, extensions have
been made to deal with complex and multimodal fitness landscapes and
dynamical environments and to obtain efficient convergence behavior
[15]–[19]. BFOA has also been hybridized with a few other state-of-
the-art evolutionary computing techniques [10], [20], [21] in order to
achieve robust and efficient search performances. Over certain real-
world optimization problems, BFOA has been reported to outperform
many powerful metaheuristics like GA, PSO, etc., in terms of con-
vergence speed and final accuracy (for example, see [11], [13], [17],
and [20]). The efficiency of the algorithm in solving real-parameter
optimization problems has made it a potential optimization algorithm
of current interest, worth investing research time. On the other hand,
a downside to the algorithm is that it has a large number of control
parameters as compared to PSO or ACO, and its performance critically
depends on the choice of these parameters. Determining the suitable
values of these control parameters necessitates a detailed mathematical
analysis of the search operators of BFOA. This paper makes a humble
attempt to contribute in this context.

One major step in BFOA is the simulated chemotactic movement.
Chemotaxis is a foraging strategy that implements one type of local
optimization where the bacteria try to climb up the nutrient concen-
tration, avoid noxious substance, and search for ways out of neutral
media. This step has much resemblance with a biased random-walk
model [22]. The chemotactic operator employed in BFOA is supposed
to guide the swarm to converge toward optima. In this paper, we make
an attempt to find out under what conditions this local search strategy
leads to a stable dynamics that can avoid limit cycles and asymp-
totically converge toward an optimum of the fitness landscape. The
stability analysis has been undertaken using the Lyapunov’s stability
theorems from classical nonlinear control theory [23], [24]. Finally,
we determine the bounds on the chemotactic step-size parameter C,
which ensures asymptotic stability. Results of computer simulations
have been provided in order to support the theoretical claims made
in this paper. Although the analysis may appear to have a limited
scope, note that this paper is the first of its kind, and the issues of
multibacterial population over a multidimensional fitness landscape
are topics of further research. In this paper, our primary objective is to
gain important insight into the operational mechanism of the artificial
bacterial-foraging system, acting as a function optimizer.

The rest of this paper is organized as follows. Section II describes
the classical BFOA in sufficient details. In Section III, differential-
equation model governing the motion of an individual bacterium in
chemotaxis phase is derived. The model is then used to carry out
stability analysis in Section IV. Results of computer simulations have

1083-4427/$25.00 © 2009 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:15 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009 671

Fig. 1. Swim and tumble of a bacterium.

been presented and discussed in Section V. The analysis presented in
this paper has been related with the stability criteria of two other state-
of-the-art optimization algorithms in Section VI. Finally, this paper is
concluded in Section VII.

II. CLASSICAL BFOA

During foraging of the real bacteria, locomotion is achieved by a set
of tensile flagella. Flagella help an E.coli bacterium to tumble or swim,
which are two basic operations performed by a bacterium at the time
of foraging [25], [26]. When they rotate the flagella in the clockwise
direction, each flagellum pulls on the cell. That results in the moving of
flagella independently, and finally, the bacterium tumbles with lesser
number of tumbling, whereas in a harmful place, it tumbles frequently
to find a nutrient gradient. Moving the flagella in the counterclockwise
direction helps the bacterium to swim at a very fast rate. In the afore-
mentioned algorithm, the bacteria undergo chemotaxis, where they like
to move toward a nutrient gradient and avoid noxious environment.
Generally, the bacteria move for a longer distance in a friendly environ-
ment. Fig. 1 shows how clockwise and counterclockwise movements
of a bacterium take place in a nutrient solution.

When they get food in sufficient amount, they are increased in
length, and in presence of suitable temperature, they break in the
middle to form an exact replica of itself. This phenomenon inspired
Passino to introduce an event of reproduction in BFOA. Due to the oc-
currence of sudden environmental changes or attack, the chemotactic
progress may be destroyed, and a group of bacteria may move to some
other places or some other may be introduced in the swarm of concern.
This constitutes the event of elimination–dispersal in the real bacterial
population, where all the bacteria in a region are killed or a group is
dispersed into a new part of the environment.

Now, suppose that we want to find the minimum of J(θ), where
θ ∈ �p (i.e., θ is a p-dimensional vector of real numbers), and we do
not have measurements or an analytical description of the gradient
∇J(θ). BFOA mimics the four principal mechanisms observed in
a real bacterial system: chemotaxis, swarming, reproduction, and
elimination–dispersal to solve this nongradient optimization problem.
In the Nomenclature, we introduce the formal notations used in BFOA
literature and then provide the complete pseudocode of the BFOA
(a more detailed description of the steps of BFOA is out of the scope
of this brief paper and can be found in [8]).

Let us define a chemotactic step to be a tumble followed by a tumble
or a tumble followed by a run. Let j be the index for the chemotactic
step. Let k be the index for the reproduction step. Let l be the index of
the elimination–dispersal event.

Let P (j, k, l) = {θi(j, k, l)|i = 1, 2, . . . , S} represent the position
of each member in the population of the S bacteria at the jth

chemotactic step, kth reproduction step, and lth elimination–dispersal
event. Here, let J(i, j, k, l) denote the cost at the location of the ith
bacterium θi(j, k, l) ∈ �p (sometimes, we drop the indexes and refer
to the ith bacterium position as θi). Note that we will interchangeably
refer to J as being a “cost” (using terminology from optimization
theory) and as being a nutrient surface (in reference to the biological
connections). For actual bacterial populations, S can be very large
(e.g., S = 109), but p = 3. In our computer simulations, we will
use much smaller population sizes and will keep the population size
fixed. BFOA, however, allows p > 3 so that we can apply the method
to higher dimensional optimization problems. As follows, we briefly
describe the four prime steps in BFOA. We also provide a pseudocode
of the complete algorithm.

1) Chemotaxis: This process simulates the movement of an E.coli
cell through swimming and tumbling via flagella. Suppose
θi(j, k, l) represents the ith bacterium at jth chemotactic, kth
reproductive, and lth elimination–dispersal step. C(i) is a scalar
and indicates the size of the step taken in the random direction
specified by the tumble (run length unit). Then, in computational
chemotaxis, the movement of the bacterium may be repre-
sented by

θi(j + 1, k, l) = θi(j, k, l) + C(i)
Δ(i)√

ΔT(i)Δ(i)
(1)

where Δ indicates a unit length vector in the random direction.
2) Swarming: An interesting group behavior has been observed

for several motile species of bacteria including E.coli and
S. typhimurium, where stable spatiotemporal patterns (swarms)
are formed in semisolid nutrient medium. A group of E.coli cells
arrange themselves in a traveling ring by moving up the nutrient
gradient when placed amid a semisolid matrix with a single
nutrient chemo-effecter. The cells when stimulated by a high
level of succinate release an attractant aspertate, which helps
them to aggregate into groups and, thus, move as concentric
patterns of swarms with high bacterial density. The cell-to-cell
signaling in E. coli swarm may be represented by the following
function:

Jcc (θ, P (j, k, l))

=

S∑
i=1

Jcc

(
θ, θi(j, k, l)

)

=

S∑
i=1

[
−dattractant exp

(
−wattractant

p∑
m=1

(
θm − θi

m

)2

)]

+

S∑
i=1

[
hrepellant exp

(
−wrepellant

p∑
m=1

(
θm − θi

m

)2

)]

(2)

where Jcc(θ, P (j, k, l)) is the objective-function value to be
added to the actual objective function (to be minimized)
to present a time-varying objective function. The coeffi-
cients dattractant, wattractant, hrepellant, and wrepellant control
the strength of the cell-to-cell signaling. More specifically,
dattractant is the depth of the attractant released by the cell,
wattractant is a measure of the width of the attractant signal
(a quantification of the diffusion rate of the chemical),
hrepellant = dattractant is the height of the repellant effect (a
bacterium cell also repels a nearby cell in the sense that it
consumes nearby nutrients, and it is not physically possible to
have two cells at the same location), and wrepellant is a measure

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:15 from IEEE Xplore. Restrictions apply.

672 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009

of the width of the repellant (for a detailed discussion on the
function Jcc, please see [8]).

3) Reproduction: The least healthy bacteria eventually die while
each of the healthier bacteria (those yielding lower value of the
objective function) asexually split into two bacteria, which are
then placed in the same location. This keeps the swarm size
constant.

4) Elimination and Dispersal: To simulate this phenomenon in
BFOA, some bacteria are liquidated at random with a very small
probability while the new replacements are randomly initialized
over the search space.

Pseudo-Code of BFOA
Parameters
[Step 1] Initialize parameters p, S, Nc, Ns, Nre, Ned, Ped,

C(i)(i = 1, 2, . . . , S), θi.
Algorithm:
[Step 2] Elimination–dispersal loop: l = l + 1
[Step 3] Reproduction loop: k = k + 1
[Step 4] Chemotaxis loop: j = j + 1

[a] For i = 1, 2, . . . , S take a chemotactic step for bacterium
i as follows.

[b] Compute fitness function, J(i, j, k, l).
Let, J(i, j, k, l)=J(i, j, k, l)+Jcc(θ

i(j, k, l), P (j, k, l))
(i.e., add on the cell-to-cell attractant–repellant profile
to simulate the swarming behavior) where Jcc is defined
in (2).

[c] Let Jlast = J(i, j, k, l) to save this value, since we may
find a better cost via a run.

[d] Tumble: generate a random vector Δ(i) ∈ �p with each
element Δm(i), m = 1, 2, . . . , p, a random number on
[−1, 1].

[e] Move: Let

θi(j + 1, k, l) = θi(j, k, l) + C(i)
Δ(i)√

ΔT(i)Δ(i)
.

This results in a step of size C(i) in the direction of the
tumble for bacterium i.

[f] Compute J(i, j + 1, k, l) and let J(i, j + 1, k, l) = J(i,
j, k, l) + Jcc(θ

i(j + 1, k, l), P (j + 1, k, l)).
[g] Swim

i) Let m = 0 (counter for swim length).
ii) While m < Ns (if have not climbed down too long).
• Let m = m + 1.
• If J(i, j + 1, k, l) < Jlast (if doing better), let Jlast =
J(i, j + 1, k, l) and let

θi(j + 1, k, l) = θi(j, k, l) + C(i)
Δ(i)√

ΔT(i)Δ(i)
.

And use this θi(j + 1, j, k) to compute the new J(i,
j + 1, k, l) as we did in [f]

• Else, let m = Ns. This is the end of the while
statement.

[h] Go to next bacterium (i + 1) if i �= S (i.e., go to [b] to
process the next bacterium).

[Step 5] If j < Nc, go to step 4. In this case, continue chemotaxis
since the life of the bacteria is not over.

[Step 6] Reproduction:

[a] For the given k and l, and for each i = 1, 2, . . . , S, let

J i
health =

Nc+1∑
j=1

J(i, j, k, l)

be the health of the bacterium i (a measure of how many
nutrients it got over its lifetime and how successful it
was at avoiding noxious substances). Sort bacteria and
chemotactic parameters C(i) in order of ascending cost
Jhealth (higher cost means lower health).

[b] The Sr bacteria with the highest Jhealth values die, and
the remaining Sr bacteria with the best values split (this
process is performed by the copies that are made are
placed at the same location as their parent).

[Step 7] If k < Nre, go to step 3. In this case, we have not
reached the number of specified reproduction steps, so we
start the next generation of the chemotactic loop.

[Step 8] Elimination–dispersal: For i = 1, 2, . . . , S with probability
Ped, eliminate and disperse each bacterium (this keeps the
number of bacteria in the population constant). To do this,
if a bacterium is eliminated, simply disperse another one to
a random location on the optimization domain. If l < Ned,
then go to step 2; otherwise, end.

III. MODELING THE CHEMOTACTIC DYNAMICS

Let us consider a single bacterium cell that undergoes chemotactic
steps according to (1) over a 1-D objective-function space. Since each
dimension in simulated chemotaxis is updated independently of others
and the only link between the dimensions of the problem space are
introduced via the objective functions, an analysis can be carried out
on the 1-D case, without loss of generality. The bacterium lives in
continuous time, and at the tth instant, its position is given by θ(t).
Next, we list a few simplifying assumptions that have been considered
for the sake of gaining mathematical insight.

1) The objective function J(θ) is continuous and differentiable at
all points in the search space. The function is unimodal in the
region of interest, and its one and only optimum (minimum) is
located at θ = θ0. In addition, J(θ) �= 0 for θ �= θ0.

2) The chemotactic step-size C is smaller than one (Passino himself
took C = 0.1 in [8]).

3) The analysis applies to the regions of the fitness landscape
where gradients of the function are small, i.e., near to the
optima.

A. Analytical Treatment

Now, according to BFOA, the bacterium changes its position only if
the modified objective-function value is less than the previous one, i.e.,
J(θ) > J(θ + Δθ), i.e., J(θ) − J(θ + Δθ) is positive. This ensures
that bacterium always moves in the direction of decreasing objective-
function value. A particular iteration starts by generating a random
vector of unit length, termed as the direction of tumble and denoted
by Δ. In case of a 1-D optimization problem, it can assume only two
values, 1 or −1 with equal probabilities. In addition, since Δ is of
unit magnitude, its value remains unchanged after dividing it by its
magnitude or norm (as done in the algorithm). The bacterium moves
by an amount of CΔ if objective-function value is reduced for new
location. Otherwise, its position will not change at all. Assuming uni-
form rate of position change, if the bacterium moves CΔ in unit time,
its position is changed by (CΔ)(Δt) in Δt seconds. It decides to move
in the direction in which concentration of nutrient increases or, in other

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:15 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009 673

words, objective function decreases, i.e., J(θ) − J(θ + Δθ) > 0.
Otherwise, it remains immobile. We have assumed that Δt is an
infinitesimally small positive quantity, thus the sign of the quantity
J(θ) − J(θ + Δθ) remains unchanged if Δt divides it. Therefore,
bacterium will change its position if, and only if, (J(θ) − J(θ +
Δθ))/Δt is positive. This crucial decision-making (i.e., whether to
take a step or not) activity of the bacterium can be modeled by a unit
step function (also known as Heaviside step function [27]) defined as

u(x) = 1, if x > 0

=0, otherwise. (3)

Thus, Δθ = u((J(θ) − J(θ + Δθ))/Δt) · (C · Δ)(Δt), where
value of Δθ is zero or (CΔ)(Δt) according to the value of the unit
step function. Dividing both sides of the earlier relation by Δt, we get

Δθ

Δt
=u

[
J(θ) − J(θ + Δθ)

Δt

]
C · Δ

⇒ Δθ

Δt
=u

[
−{J(θ + Δθ) − J(θ)}

Δt

]
C · Δ. (4)

Defining the velocity of the bacterium as Vb = LimΔt→0(Δθ/Δt)
(naturally, here, we assume the time to be unidirectional, i.e., Δt > 0),
we obtain

Vb = Lim
Δt→0

Δθ

Δt
= Lim

Δt→0

[
u

{
−J(θ+Δθ)−J(θ)

Δt

}
·C ·Δ

]

⇒ Vb = Lim
Δt→0

[
u

{
−J(θ+Δθ)−J(θ)

Δθ

Δθ

Δt

}
·C ·Δ

]

as Δt → 0 makes Δθ → 0, we may write, Vb =
[u{−(LimΔθ→0((J(θ +Δθ)−J(θ))/Δθ))(LimΔt→0(Δθ/Δt))} ·
C · Δ]. Again, J(θ) is assumed to be continuous and differentiable,
and thus, LimΔθ→0((J(θ + Δθ) − J(θ))/Δθ) is the value of the
gradient at the point θ = θ. Therefore, we have

Vb = u(−GVb)CΔ (5)

where G=(dJ(θ)/dθ) = gradient of the objective function at θ = θ.
In (5), argument of the unit step function is −GVb. Value of the

unit step function is one if G and Vb are of different sign, and in
this case, the velocity is CΔ. Otherwise, it is zero, making bacterium
motionless. Therefore, (5) suggests that bacterium will move the
direction of negative gradient.

Since the unit step function u(x) has a jump discontinuity at x = 0,
to simplify the analysis further, we replace u(x) with the continuous
logistic function φ(x), where φ(x) = (1/(1 + e−kx)).

We note that

u(x) = Lt
k→∞

φ(x) = Lt
k→∞

1

1 + e−kx
. (6)

Fig. 2 shows how the logistic function approaches the unit step
function as k tends to infinity. For analysis purpose, k cannot be
infinity. We restrict ourselves to moderately large values of k (for
example, k = 10) for which φ(x) fairly approximates u(x). Thus, for
moderately high values of k, φ(x) fairly approximates u(x). Hence,
from (5)

Vb =
CΔ

1 + ekGVb
. (7)

According to assumptions 2) and 3), if C and G are very small and
k ∼ 10, then we may also have |kGVb| 	 1. In that case, we neglect

Fig. 2. Unit step and the logistic functions. (a) Unit step function.
(b) Approximation with logistic function.

higher order terms in the expansion of ekgvb and have ekgvb ≈ 1 +
kGVb. Substituting it in (7), we obtain

Vb =
C · Δ

2 + kGVb

⇒ Vb =
C · Δ

2

1

1 + kGVb
2

⇒ Vb =
C · Δ

2

(
1 − kGVb

2

)
[

∵
∣∣∣∣kGVb

2

∣∣∣∣ 	 1, neglecting higher terms

(
1 +

kGVb

2

)−1

≈
(

1 − kGVb

2

)]
.

After some manipulation, we have

Vb =
2C · Δ

4 + kGCΔ
(8)

⇒ Vb =
CΔ

2

1

1 + kCGΔ
4

⇒ Vb =
CΔ

2

(
1 − kGCΔ

4

)
[

∵
∣∣∣∣kGCΔ

4

∣∣∣∣ =

∣∣∣∣kGC

4

∣∣∣∣ 	 1, as |Δ| = 1

and neglecting the higher order terms.

]

⇒ Vb =
CΔ

2
− kGC2Δ2

8

⇒ Vb =
dθ

dt
= −kC2

8
G +

CΔ

2
[∵ Δ2 = 1]. (9)

Equation (9) represents the fundamental dynamics of the computa-
tional chemotaxis step in BFOA. Equation (9) is applicable to a single-
bacterium system and is independent of the objective function (as
long as the function obeys the assumptions listed and it does not take
into account the cell-to-cell signaling effect). In what follows, our
stability-analysis procedures will be mostly centered on this equation.
From (9), we get

Vb = −kC2

8
G +

C · Δ
2

⇒ dθ

dt
= −α′G + β′ (10)

where α′ is −kC2/8 and β′ is CΔ/2. The classical gradient-
descent-search algorithm is given by the following dynamics in single

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:15 from IEEE Xplore. Restrictions apply.

674 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009

dimension [10]:

dθ

dt
= −α · G + β (11)

where α is the learning rate and β is the momentum [28]. Similarity
between (10) and (11) suggests that chemotaxis may be considered as s
modified gradient descent search, where α′, a function of chemotactic
step-size, can be identified as the learning-rate parameter. Note that
the random-search or momentum term (C · Δ)/2 in the right-hand
side of (9) provides an additional feature to the classical gradient
descent search. When gradient becomes very small, the random term
dominates over gradient decent term, and the bacterium changes its
position. However, random-search term may lead to change in position
in the direction of increasing objective-function value. If it happens,
then, again, the magnitude of gradient increases and dominates the
random-search term.

B. Experimental Verification of the Chemotactic Dynamics
as Given by (9)

In order to verify how reliably does (9) represent the motion of
a virtual bacterium, we compare results obtained from (9) with that
obtained using the actual BFOA iterations. First, we express (9) in
iterative (discrete time) form given by

Vb(p) = θ(p) − θ(p − 1) = −kC2

8
G(p − 1) +

CΔ(p)

2

⇒ θ(p) = θ(p − 1) − kC2

8
G(p − 1) +

CΔ(p)

2
(12)

where p is the iteration index. The tumble vector Δ(p) is also a
function of iteration count (i.e., chemotactic step number) as it is
generated anew for successive iterations. We have taken J(θ) = θ2

as objective function for this simulation study. The bacterium was
initialized at −2, i.e., θ(0) = −2, and C is taken as 0.2. Here, the
gradient of J(θ) is 2θ. Therefore, G(p − 1) may be replaced by
2θ(p − 1). Finally, for this specific case, we get

θ(p) =

(
1 − kC2

4

)
θ(p − 1) +

CΔ(p)

2
. (13)

We compute values of θ(n) for successive iterations according to
earlier iterative relation. In addition, values of positions are noted
following guidelines of BFOA. The current position is changed by
CΔ if objective-function value decreases for new position. Results
are shown in Fig. 3. Fig. 3(a) shows position in successive iteration
according to BFOA and as obtained from (13). Here, also, we have as-
sumed position of bacterium changes linearly between two subsequent
iterations. Mismatch between the actual and predicted values is shown
in the same figure. Fig. 3(b) shows the actual and predicted values of
velocity. Velocity is assumed to be constant between two successive
iterations. According to BFOA, magnitude of velocity is either C (0.2
in this case) or zero. Difference between actual and predicted velocity
is shown as error. Time lapsed between two subsequent iterations
is spent for computation and is termed as unit time. This may be
perceived as the time required by a bacterium to measure nutrient
content of a new point on fitness landscape. It is the time taken by
the processor to perform numerical computations.

Fig. 3(a) and (b) shows that (9) can adequately model the dynamics
of a bacterium, which is taking chemotactic steps in BFOA.

Fig. 3. Comparison between actual and predicted motional states of the
bacterium. (a) Plots showing actual and predicted positions of bacterium and
error in estimation over successive iterations. (b) Similar plots for velocity of
the bacterium.

IV. STABILITY ANALYSIS

In this section, we analyze the stability of the chemotactic dynamics
represented by (9) using the concept of Lyapunov stability theorems
[23]. We begin this treatment by explaining some basic concepts and
their interpretations from the standard literature on nonlinear control
theory [24], [29]. We denote a vector variable by �x instead of θ and a
scalar function of the vector variable as f(�x) instead of J(θ) to cope
with the standard notations of the literature on control theory.

Definition 4.1: A point �x = �xe is called an equilibrium state, if the
dynamics of the system is given by

d�x

dt
= f (�x(t))

becomes zero at �x = �xe for any t, i.e., f(�xe(t)) = 0. The equilibrium
state is also called equilibrium (stable) point in D-dimensional hyper-
space, when the state �xe has D components.

Definition 4.2: A scalar function V (�x) is said to be positive definite
with respect to the point �xe in the region ‖�x − �xe‖ ≤ K, if V (�x) > 0
at all points of the region except at �xe where it is zero.

Definition 4.3: A scalar function V (�x) is said to be negative definite
if −V (�x) is positive definite.

Definition 4.4: A dynamics (d�x/dt) = f(�x(t)) is asymptotically
stable at the equilibrium point �xe, if we have the following conditions.

1) It is stable in the sense of Lyapunov, i.e., for any neighbor-
hood S(ε) surrounding �xe (S(ε) contains points �x for which

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:15 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009 675

‖�x − �xe‖ ≤ ε), where there is a region S(δ) (S(δ) contains
points �x for which ‖�x − �xe‖ ≤ δ), δ < ε, such that trajectories
of the dynamics starting within S(δ) do not leave S(ε) as time
t → ∞.

2) The trajectory starting within S(δ) converges to the origin as
time t approaches infinity.

The sufficient condition for stability of a dynamics can be obtained
from the Lyapunov’s theorem, presented as follows.

Lyapunov’s Stability Theorem [23], [26]: Given a scalar function
V (�x) and some real number ε > 0, such that, for all �x in the region
‖�x − �xe‖ ≤ ε, the following conditions hold.

1) V (�xe) = 0.
2) V (�x) > 0 for �x �= �xe, i.e., V (�x) is positive definite.
3) V (�x) has continuous first partial derivatives with respect to all

components of �x.

Then, the equilibrium state �xe of the system (d�x/dt) = f(�x(t)) is
as follows.

1) Asymptotically stable if (dV/dt) < 0, i.e., dV/dt is negative
definite.

2) Asymptotically stable in the large if (dV/dt) < 0 for �x �= �xe,
and in addition, V (�x) → ∞ as ‖�x − �xe‖ → ∞.

Remark: Lyapunov stability analysis is based on the idea that if
the total energy in the system continually decreases, then the system
will asymptotically reach the zero energy state associated with an
equilibrium point of the system. A system is said to be asymptotically
stable if all the states approach the equilibrium state with time.

Theorem 4.1 (Main Result): Let the bacterial dynamics be repre-
sented by (9), and θ = θ0 is the single optimum (minimum) in the
region of search. Then, this optimum is asymptotically stable if

C > 4
k

∣∣∣ θ−θ0
J(θ)

∣∣∣ , if θ �= θ0.

= 0, if θ = θ0.
(14)

Proof: In order to determine the equilibrium point for the system,
we set (by Definition 4.1)

dθ

dt
= 0

⇒ −kC2

8
G +

CΔ

2
= 0. (15)

Since the bacterium is expected to converge at the optimum of the
fitness landscape, we have the equilibrium point θe = θ0 and also the
function gradient G = 0 at this point. Putting G = 0 in (15), we obtain
C = 0. Thus, the step-height C should become zero at θ = θ0 for the
equilibrium point to be located at the desired optimum, i.e.,

C = 0, if θ = θ0. (16)

This criterion is intuitively appealing also from the perspective of an
optimization algorithm. Once reaching the optimum of the unimodal
fitness landscape, the bacterium is expected to stay there, and hence,
it should not take any more chemotactic steps or, in other words, its
chemotactic step-size C should become zero.

Now, to test the stability, consider a scalar function

V (θ) =
kC2

8
J(θ) − CΔ

2
(θ − θ0) (17)

where J(θ) is the objective function. In order to qualify as a Lyapunov
energy function, V (θ) must be a positive-definite function with respect
to the equilibrium point θ0. Thus, by Definition 4.2, V (θ) must satisfy
the relation V (θ0) = 0, and V (θ) > 0 if θ �= θ0.

As C = 0 at θ = θ0, we have

V (θ0) =
kC2

8
J(θ0) −

CΔ

2
(θ0 − θ0) =

kC2

8
J(θ0) = 0.

Now, for the second condition to be satisfied, we should have

kC2

8
J(θ) − CΔ

2
(θ − θ0) > 0 ∀ θ �= θ0

⇒ kC
4

J(θ) > (θ − θ0)Δ ∀ θ �= θ0

[as C > 0 for all positions other than optima]. (18)

Now, by assumption 1), J(θ) �= 0 for all θ �= θ0, and also, noting that
k > 0, dividing both sides of (16) by kJ(θ)/4, we get

C >
4(θ − θ0)Δ

kJ(θ)
∀ θ �= θ0. (19)

If the right-hand side of (17) is negative, it will lead to a trivial
condition as step-height C is always positive.

Now ∣∣∣∣4(θ − θ0)Δ

kJ(θ)

∣∣∣∣ ≥ 4(θ − θ0)Δ

kJ(θ)

⇒ 4

k

∣∣∣∣θ − θ0

J(θ)

∣∣∣∣ ≥ 4(θ − θ0)Δ

kJ(θ)
[as |Δ| = 1] .

Therefore, if C satisfies the relation C > (4/k)|(θ − θ0)/J(θ)| for all
θ �= θ0, then C > (4/k)|(θ − θ0)/J(θ)| ≥ (4(θ − θ0)Δ)/kJ(θ) for
all θ �= 0, i.e., condition (19) is automatically satisfied.

Thus, provided that C satisfies conditions (16) and (19), V (θ) is a
Lyapunov energy function and

dV

dt
=

dV

dθ
· dθ

dt
. (20)

Now, differentiating both sides of (15) with θ, we have

dV

dθ
=

kC2

8
· dJ(θ)

dθ
− C · Δ

2
= −

(
−kC2

8
· G +

C · Δ
2

)
(21)

substituting values of dV/dθ and dθ/dt from (19) and (9), respec-
tively, into (18), we get

dV

dt
= −

(
−kC2

8
G +

CΔ

2

)2

< 0 ∀ θ �= θ0. (22)

In addition, dV/dt = 0 if θ = θ0 [as C = 0 and G = 0 at θ = θ0].
Thus, by Definition 4.3, dV/dt is negative definite. Therefore, we
can infer that the bacterial dynamics of (9) exhibits an asymptotically
stable behavior with respect to the optimum θ = θ0 if the step size
satisfies conditions (14) and (17) simultaneously. This completes the
proof. �

V. COMPUTER-SIMULATION RESULTS

In Section IV, we have derived the criterion for asymptotic stability
of a bacterium with respect to an optimum of the search space. In this
section, we investigate what happens to the dynamics of the bacterium
if this criterion is met and whether the bacterium shows unstable
or oscillatory behavior otherwise, with the help of computer simu-
lations. Consider the case of a single bacterium taking chemotactic
steps over 1-D fitness landscape of the function J(θ) = θ2, where
the single optimum located at θ = θ0 = 0. Let the bacterium start
from θ = −0.5 and start taking chemotactic steps of height C = 0.2
following the directives of the actual BFOA. Now, as step size remains
constant, condition given in (12) is violated at some point of time.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:15 from IEEE Xplore. Restrictions apply.

676 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009

TABLE I
VALUES OF C AND Cthreshold OVER SUCCESSIVE ITERATIONS

Fig. 4. Phase trajectory constructed according to algorithm not main-
taining (14).

TABLE II
VARIOUS STATES AND SET OF DIRECTION OF

TUMBLE USED FOR SIMULATION

Let Cthreshold = (4/k)|(θ − θ0)/J(θ)|. Then, according to (12), the
bacterium should exhibit stable dynamic behavior near the optima
as long as C > Cthreshold. Table I shows, with changing positions
of bacterium, varying values of Cthreshold. We have assumed that
k = 130. Fig. 4 shows the phase trajectory (plot of velocity versus
position) of a bacterium.

A brief explanation to the nature of the phase trajectory shown in
Fig. 4 may be given in the following way. The bacterium starts from the
initial position θ = −0.5, and this initial position is marked as point A
in the phase trajectory. Now, in each iteration, a direction of tumble Δ
(which, in this paper, can be either 1 or −1) is generated randomly.
Note that, due to the greedy nature of computational chemotaxis,
the bacterium can really move only if Δ leads it to the direction of
nondecreasing fitness (i.e., nonincreasing objective-function value).
The values of Δ and the positions and velocities of the bacterium at
successive time-steps (as used in Fig. 4) have been reported in Table II.

In the very first iteration, the bacterium takes a step of size 0.2 and
reaches θ = −0.3. Then, in the second iteration, it does not move (as

Fig. 5. Variation of position with time for the bacterium of Fig. 4.

Fig. 6. Phase trajectory constructed for bacterium satisfying condition (14).

Fig. 7. Phase trajectories of a single bacterium over the objective function

J(θ) = 1 − e−θ2
. (a) Limit cyclic behavior of the bacterium, not satisfying

condition (14). (b) Stable behavior of the bacterium, satisfying condition (14).

doing so would increase the function value), and its velocity drops
to zero. This situation is represented as point B in phase trajectory.
The line AB makes an angle of −45◦ with the position axis. Next,
it takes a chemotactic step. This state can be seen in C. After taking
the step, it reaches P. Now, the bacterium can change position by

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:15 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009 677

Fig. 8. Particle trajectories in phase plane for PSO over the objective function J(x) = x2. (a) Stable behavior for c1 + c2 = 2 and w = 0.2 [obeying condition
(25)]. (b) Unstable behavior for c1 + c2 = 3.5 and w = 0.9.

an amount C or −C, which are 0.2 and −0.2 in this case. These
cases have been shown in P and S. Otherwise, it remains immobile
and velocity becomes zero. These cases can be observed in Q and R.
The bacterium makes transition between these points in cyclic order.
Here, in states P, Q, R, and S, the objective-function value remains
constant, and the distance of the bacterium from the optimum is also
constant. Still, it continues to change its position. From Table I, we
can predict that, after reaching θ = −0.1, the bacterium should show
asymptotically unstable behavior. Experimentally, we observe that the
bacterium enters stable limit cycles after reaching that position (please
see Fig. 3). Fig. 5 shows how the position of the bacterium θ varies
with iteration time-step.

Finally, we observe what happens if the condition mentioned in (14)
is satisfied, i.e., C < (4/k)|(θ − θ0)/J(θ)| for all θ in the feasible
search range. In this case, we take C = Cthreshold + ξ for each
iteration, where ξ = 0.01 is a small positive bias. Initial position is
again θ = −0.5. Phase trajectory, constructed for this case, has been
provided as shown in Fig. 6, and we observe that it converges and
shows no oscillatory behavior.

In Fig. 7, we show phase-trajectories for another function J(θ) =

1 − e−θ2
. In addition, we observe that if condition (12) is not met, the

bacterium gets trapped into limit cycle [Fig. 7(a)], and if the condition
is satisfied, then it asymptotically converges to the optimum, as shown
in Fig. 7(b).

Please note that the semigreedy nature of the chemotactic dynamics
is responsible for the oscillatory behavior near the optimum, when
step-size does not satisfy the Lyapunov’s stability criterion.

VI. RELATION WITH THE STABILITY CRITERIA OF OTHER

POPULAR METAHEURISTICS

Determining the stability criteria for population-based metaheuris-
tics is a challenging problem at its own right. Previously, the stability
of another powerful swarm-intelligence algorithm called PSO has been
extensively studied for both deterministic and stochastic dynamics in
works like [30]–[32]. Usually, just like we did in Section IV for BFOA,
for PSO also, the stability criteria are formulated as suitable bounds
over the control parameters. In PSO, each particle is defined as a
potential solution to a problem in d-dimensional space with a memory
of its previous best position and the best position among all particles,
in addition to a velocity component. At each iteration, the particles are
combined to adjust the velocity along each dimension, which in turn is

Fig. 9. Phase trajectory of the median order vector (in a population of size
NP = 11) for objective function J(x) = x2.

used to compute the new particle position. The particle dimension in
single dimension may be given by

vt+1 =ωvt + αl
t

(
pl

t − xt

)
+ αg

t (pg
t − xt) (23)

xt+1 =xt + vt+1 (24)

where vt is the velocity of the particle at the tth iteration, xt is the
particle position at the tth iteration, pl

t is the personal (local) best
position of the particle so far achieved until iteration t, and pg

t is the
global best position among all particles at iteration t. αl

t ∼ (0, c1) and
αg

t ∼ (0, c2) are random parameters with uniform distributions where
c1 and c2 are constants known as acceleration coefficients. In [32],
Kadirkamanathan et al. analyzed the stability of particle dynamics
without the deterministic restrictions using the Lyapunov stability
theorems. The stability criterion was formulated as

c1 + c2 <

(
2 (1 − 2|w| + w2)

1 + w

)
. (25)

Fig. 8(a) and (b) shows the stable and unstable behaviors of a particle
in phase plane (velocity versus position) for two different sets of

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:15 from IEEE Xplore. Restrictions apply.

678 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009

parameters c1, c2, and w over the same objective function J(x) = x2

which we also used to test the stability criteria of BFOA.
Another state-of-the-art evolutionary algorithm, which has gained

wide popularity these days, is the differential evolution (DE) [33],
[34]. Since its advent in 1995, DE has found several interesting ap-
plications in engineering optimization problems (e.g., see [35]–[38]).
The population dynamics of DE has been extensively studied, and the
stability aspects were investigated by Dasgupta et al. in [39] and [40].
The results indicate that the search agents (also called vectors in DE
literature) remain stable and asymptotically converge to an optimum
of the search volume for the two parameters F (scale factor) and Cr
(crossover rate) remaining below one, which is the usual range of their
values. The phase trajectory of the median order vector (in a population
of size NP = 11) has been shown in Fig. 9 on the function J(x) = x2

for the most popular DE/rand/1/bin scheme [33].
Unlike PSO and DE, the uniqueness of the stability criteria of BFOA

remains in the fact that in order to ensure stability of the chemotactic
dynamics in BFOA, the step-size parameter C must be adjusted (i.e.,
made adaptive) according to the current location of the bacterium and
its current fitness as shown in (14).

VII. CONCLUSION

In this paper, we have presented a simple mathematical model of
the computational chemotaxis operation in BFOA, which emerges as a
prominent optimization technique of current interest. The Lyapunov’s
stability theorems were applied to derive the conditions of asymptotic
stability of a bacterium near an isolated optimum of the fitness
landscape. Computer simulations over two 1-D unimodal objective
functions illustrate how the bacterium bursts into oscillations around
the optimum instead of converging to the same, when the stability
criteria derived here are not satisfied. We also note that in classical
BFOA, where the step-size is usually kept constant, at some point
of time, the step-size violates the conditions of asymptotic stability,
and the bacterium starts oscillating around the optimum, instead of
converging to it. This calls for some adaptation schemes, which
may adjust the step-size on the run, thus avoiding the limit cycles.
Future work should focus on extending the analysis undertaken here,
to a multibacterial swarm working on a multidimensional fitness
landscape. Another avenue is to include the effects of reproduction
and elimination–dispersal events in the same mathematical model, in
order to judge their effects on stability of the group dynamics. Some
adaptation schemes for online adjustment of the chemotactic step-size
(that guarantees convergence to the optimum) over different objective
functions should also be investigated in future.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: Univ. Michigan Press, 1975.

[2] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Boston, MA: Kluwer, 1989.

[3] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence Through
Simulated Evolution. Hoboken, NJ: Wiley, 1966.

[4] H.-P. Schwefel, Evolution and Optimum Seeking. New York: Wiley,
1995.

[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE
Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[6] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[7] F. T. S. Chan and M. K. Tiwari, Swarm Intelligence: Focus on Ant and
Particle Swarm Optimization. Vienna, Austria: I-Tech Edu. Publishing,
2007.

[8] K. M. Passino, “Biomimicry of bacterial foraging for distributed optimiza-
tion and control,” IEEE Control Syst. Mag., vol. 22, no. 3, pp. 52–67,
Jun. 2002.

[9] Y. Liu and K. M. Passino, “Biomimicry of social foraging bacteria for
distributed optimization: Models, principles, and emergent behaviors,”
J. Optim. Theory Appl., vol. 115, no. 3, pp. 603–628, Dec. 2002.

[10] D. H. Kim, A. Abraham, and J. H. Cho, “A hybrid genetic algorithm and
bacterial foraging approach for global optimization,” Inf. Sci., vol. 177,
no. 18, pp. 3918–3937, Sep. 2007.

[11] S. Mishra, “A hybrid least square-fuzzy bacterial foraging strategy
for harmonic estimation,” IEEE Trans. Evol. Comput., vol. 9, no. 1,
pp. 61–73, Feb. 2005.

[12] M. Tripathy, S. Mishra, L. L. Lai, and Q. P. Zhang, “Transmission loss
reduction based on facts and bacteria foraging algorithm,” in Parallel
Problem Solving From Nature (PPSN IX), ser. Lecture Notes in Computer
Science, vol. 4193. Berlin: Springer-Verlag, 2006, pp. 222–231.

[13] S. Mishra and C. N. Bhende, “Bacterial foraging technique-based
optimized active power filter for load compensation,” IEEE Trans. Power
Del., vol. 22, no. 1, pp. 457–465, Jan. 2007.

[14] D. H. Kim and C. H. Cho, “Bacterial foraging based neural network fuzzy
learning,” in Proc. IICAI, 2005, pp. 2030–2036.

[15] W. J. Tang, Q. H. Wu, and J. R. Saunders, “A novel model for bacteria
foraging in varying environments,” in Proc. ICCSA, 2006, vol. 3980,
pp. 556–565.

[16] M. S. Li, W. J. Tang, W. H. Tang, Q. H. Wu, and J. R. Saunders, “Bacteria
foraging algorithm with varying population for optimal power flow,” in
Proc. Evo Workshops, 2007, vol. 4448, pp. 32–41.

[17] M. Tripathy and S. Mishra, “Bacteria foraging-based solution to optimize
both real power loss and voltage stability limit,” IEEE Trans. Power Syst.,
vol. 22, no. 1, pp. 240–248, Feb. 2007.

[18] M. Ulagammai, P. Vankatesh, P. S. Kannan, and N. P. Padhy, “Ap-
plication of bacterial foraging technique trained artificial and wavelet
neural networks in load forecasting,” Neurocomputing, vol. 70, no. 16–18,
pp. 2659–2667, Oct. 2007.

[19] M. A. Munoz, J. A. Lopez, and E. Caicedo, “Bacteria foraging opti-
mization for dynamical resource allocation in a multizone temperature
experimentation platform,” Anal. Des. Intell. Syst. Using SC Tech., ASC,
vol. 41, pp. 427–435, 2007.

[20] A. Biswas, S. Dasgupta, S. Das, and A. Abraham, “Synergy of PSO
and Bacterial foraging optimization: A comparative study on numerical
benchmarks,” in Proc. 2nd Int. Symp. HAIS, E. Corchado et al., Ed. Berlin,
Germany: Springer-Verlag, 2007, vol. 44, pp. 255–263.

[21] A. Biswas, S. Dasgupta, S. Das, and A. Abraham, “A synergy of differen-
tial evolution and bacterial foraging optimization for faster global search,”
Int. J. Neural Mass-Parallel Comput. Inf. Syst.—Neural Network World,
vol. 17, no. 6, pp. 607–626, 2007.

[22] B. D. Hughes, Random Walks and Random Environments. London,
U.K.: Oxford Univ. Press, 1996.

[23] W. Hahn, Theory and Application of Lyapunov’s Direct Method.
Englewood Cliffs, NJ: Prentice–Hall, 1963.

[24] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and
Control: A Lyapunov-Based Approach. Princeton, NJ: Princeton Univ.
Press, 2008.

[25] H. Berg and D. Brown, “Chemotaxis in escherichia coli analysed by
three-dimensional tracking,” Nature, vol. 239, no. 5374, pp. 500–504,
Oct. 1972.

[26] H. Berg, Random Walks in Biology. Princeton, NJ: Princeton Univ.
Press, 1993.

[27] R. P. Anwal, Generalized Functions: Theory and Technique, 2nd ed.
Boston, MA: Birkhãuser, 1998.

[28] J. A. Snyman, Practical Mathematical Optimization: An Introduction to
Basic Optimization Theory and Classical and New Gradient-Based Algo-
rithms. New York: Springer-Verlag, 2005.

[29] B. C. Kuo, Automatic Control Systems. Englewood Cliffs, NJ:
Prentice–Hall, 1987.

[30] M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.

[31] I. C. Trelea, “The particle swarm optimization algorithm: Convergence
analysis and parameter selection,” Inf. Process. Lett., vol. 85, no. 6,
pp. 317–325, Mar. 2003.

[32] V. Kadirkamanathan, K. Selvarajah, and P. J. Fleming, “Stability analysis
of the particle dynamics in particle swarm optimizer,” IEEE Trans. Evol.
Comput., vol. 10, no. 3, pp. 245–255, Jun. 2006.

[33] K. Price, R. Storn, and J. Lampinen, Differential Evolution—A Practical
Approach to Global Optimization. Berlin, Germany: Springer-Verlag,
2005.

[34] J. Lampinen, “A bibliography of differential evolution algorithm,”
Lappeenranta Univ. Technol., Dept. Inf. Technol., Lab. Inf. Process.,
Lappeenranta, Finland, 1999. Tech. Rep. [Online]. Available: http://
www.lut.fi/~jlampine/debiblio.htm

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:15 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009 679

[35] B. V. Babu and K. K. N. Sastry, “Estimation of heat transfer parameters
in a trickle-bed reactor using differential evolution and orthogonal collo-
cation,” Comput. Chem. Eng., vol. 23, no. 3, pp. 327–339, Feb. 1999.

[36] R. Angira and B. V. Babu, “Optimization of process synthesis and design
problems: A modified differential evolution approach,” Chem. Eng. Sci.,
vol. 61, no. 14, pp. 4707–4721, Jul. 2006.

[37] B. V. Babu and R. Angira, “Modified Differential Evolution (MDE) for
optimization of non-linear chemical processes,” Comput. Chem. Eng.,
vol. 30, no. 6/7, pp. 989–1002, May 2006.

[38] B. V. Babu, P. G. Chakole, and J. H. Syed Mubeen, “Multiobjective Differ-
ential Evolution (MODE) for optimization of adiabatic styrene reactor,”
Chem. Eng. Sci., vol. 60, no. 17, pp. 4822–4837, Sep. 2005.

[39] S. Dasgupta, A. Biswas, S. Das, and A. Abraham, “The population dy-
namics of differential evolution: A mathematical model,” in Proc. IEEE
CEC, IEEE WCCI, 2008, pp. 1439–1446.

[40] S. Dasgupta, S. Das, A. Abraham, and A. Biswas, “On stability and
convergence of the population-dynamics in differential evolution,” in AI
Commun., 2009, to be published.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:15 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

