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Abstract. Finding appropriate features is one of the key problems in
the increasing applications of rough set theory, which is also one of the
bottlenecks of the rough set methodology. Particle Swarm Optimization
(PSO) is particularly attractive for this challenging problem. In this pa-
per, we attempt to solve the problem using a particle swarm optimization
approach. The proposed approach discover the best feature combinations
in an efficient way to observe the change of positive region as the parti-
cles proceed through the search space. We evaluate the performance of
the proposed PSO algorithm with Genetic Algorithm (GA). Empirical
results indicate that the proposed algorithm could be an ideal approach
for solving the feature reduction problem when other algorithms failed
to give a better solution.

1 Introduction

Rough set theory [1,2,3] provides a mathematical tool that can be used for both
feature selection and knowledge discovery. It helps us to find out the minimal
attribute sets called ‘reducts ’ to classify objects without deterioration of clas-
sification quality and induce minimal length decision rules inherent in a given
information system. The idea of reducts has encouraged many researchers in
studying the effectiveness of rough set theory in a number of real world do-
mains, including medicine, pharmacology, control systems, fault-diagnosis, text
categorization, social sciences, switching circuits, economic/financial prediction,
image processing, and so on [4,5,6,7,8,9,10].

Usually real world objects are the corresponding tuple in some decision tables.
They store a huge quantity of data, which is hard to manage from a computa-
tional point of view. Finding reducts in a large information system is still an
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NP-hard problem [11,15]. The high complexity of this problem has motivated
investigators to apply various approximation techniques to find near-optimal so-
lutions. Many approaches have been proposed for finding reducts, e.g., discerni-
bility matrices, dynamic reducts, and others [12,13]. The heuristic algorithm is a
better choice. Hu [14] proposed a heuristic algorithm using discernibility matrix.
The approach provided a weighting mechanism to rank attributes. Zhong [15]
presented a wrapper approach using rough sets theory with greedy heuristics for
feature subset selection. The aim of feature subset selection is to find out a min-
imum set of relevant attributes that describe the dataset as well as the original
all attributes do. So finding reduct is similar to feature selection. Zhong’s algo-
rithm employed the number of consistent instances as heuristics. Banerjee [16]
presented various attempts of using Genetic Algorithms (GA) in order to obtain
reducts. Although several variants of reduct algorithms are reported in the lit-
erature, at the moment, there is no accredited best heuristic reduct algorithm.
So far, it’s still an open research area in rough sets theory.

Particle swarm algorithm is inspired by social behavior patterns of organisms
that live and interact within large groups. In particular, it incorporates swarm-
ing behaviors observed in flocks of birds, schools of fish, or swarms of bees, and
even human social behavior, from which the Swarm Intelligence (SI) paradigm
has emerged [17]. The swarm intelligent model helps to find optimal regions of
complex search spaces through interaction of individuals in a population of parti-
cles [18,19]. As an algorithm, its main strength is its fast convergence, which com-
pares favorably with many other global optimization algorithms [20,21]. It has
exhibited good performance across a wide range of applications [22,23,24,25,26].
The particle swarm algorithm is particularly attractive for feature selection as
there seems to be no heuristic that can guide search to the optimal minimal
feature subset. Additionally, it can be the case that particles discover the best
feature combinations as they proceed throughout the search space. This paper
investigates how particle swarm optimization algorithm may be applied to the
difficult problem of finding optimal reducts.

The rest of the paper is organized as follows. Some related terms and theorems
on rough set theory are explained briefly in Section 2. The proposed approach
based on particle swarm algorithm is presented in Section 3. In Section 4, ex-
periment results and discussions are provided in detail. Finally conclusions are
made in Section 5.

2 Rough Set Reduction

The basic concepts of rough set theory and its philosophy are presented and
illustrated with examples in [1,2,3,15,27,28]. Here, we illustrate only the relevant
basic ideas of rough sets that are relevant to the present work.

In rough set theory, an information system is denoted in 4-tuple by S =
(U, A, V, f), where U is the universe of discourse, a non-empty finite set of N
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objects {x1, x2, · · · , xN}. A is a non-empty finite set of attributes such that
a : U → Va for every a ∈ A (Va is the value set of the attribute a).

V =
⋃

a∈A

Va

f : U×A → V is the total decision function (also called the information function)
such that f(x, a) ∈ Va for every a ∈ A, x ∈ U . The information system can also
be defined as a decision table by S = (U, C, D, V, f). For the decision table, C
and D are two subsets of attributes. A = {C ∪D}, C ∩D = ∅, where C is the set
of input features and D is the set of class indices. They are also called condition
and decision attributes, respectively.

Let a ∈ C ∪ D, P ⊆ C ∪ D. A binary relation IND(P ), called an equivalence
(indiscernibility) relation, is defined as follows:

IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, f(x, a) = f(y, a)} (1)

The equivalence relation IND(P ) partitions the set U into disjoint subsets. Let
U/IND(P ) denote the family of all equivalence classes of the relation IND(P ).
For simplicity of notation, U/P will be written instead of U/IND(P ). Such a
partition of the universe is denoted by U/P = {P1, P2, · · · , Pi, · · · }, where Pi is
an equivalence class of P , which is denoted [xi]P . Equivalence classes U/C and
U/D will be called condition and decision classes, respectively.
Lower Approximation: Given a decision table T = (U, C, D, V, f). Let R ⊆ C∪D,
X ⊆ U and U/R = {R1, R2, · · · , Ri, · · · }. The R-lower approximation set of X
is the set of all elements of U which can be with certainty classified as elements
of X , assuming knowledge R. It can be presented formally as

R−(X) =
⋃

{Ri | Ri ∈ U/R, Ri ⊆ X} (2)

Positive Region: Given a decision table T = (U, C, D, V, f). Let B ⊆ C, U/D =
{D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-positive region
of D is the set of all objects from the universe U which can be classified with
certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

B−(Di) (3)

Reduct : Given a decision table T = (U, C, D, V, f). The attribute a ∈ B ⊆ C is
D − dispensable in B, if POSB(D) = POS(B−{a})(D); otherwise the attribute
a is D − indispensable in B. If all attributes a ∈ B are D − indispensable in
B, then B will be called D − independent. A subset of attributes B ⊆ C is
a D − reduct of C, iff POSB(D) = POSC(D) and B is D − independent. It
means that a reduct is the minimal subset of attributes that enables the same
classification of elements of the universe as the whole set of attributes. In other
words, attributes that do not belong to a reduct are superfluous with regard to
classification of elements of the universe.
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Reduced Positive Universe and Reduced Positive Region: Given a decision ta-
ble T = (U, C, D, V, f). Let U/C = {[u

′

1]C , [u
′

2]C , · · · , [u
′

m]C}, Reduced Positive
Universe U

′
can be written as:

U
′
= {u

′

1, u
′

2, · · · , u
′

m}. (4)

and
POSC(D) = [u

′

i1 ]C ∪ [u
′

i2 ]C ∪ · · · ∪ [u
′

it
]C . (5)

Where ∀u
′

is
∈ U

′
and |[u′

is
]C/D| = 1(s = 1, 2, · · · , t). Reduced positive universe

can be written as:
U

′

pos = {u
′

i1 , u
′

i2 , · · · , u
′

it
}. (6)

and ∀B ⊆ C, reduced positive region

POS
′

B(D) =
⋃

X∈U ′ /B∧X⊆U ′
pos∧|X/D|=1

X (7)

where |X/D| represents the cardinality of the set X/D. ∀B ⊆ C, POSB(D) =
POSC(D) if POS

′

B = U
′

pos [28]. It is to be noted that U
′
is the reduced universe,

which usually would reduce significantly the scale of datasets. It provides a more
efficient method to observe the change of positive region when we search the
reducts. We didn’t have to calculate U/C, U/D, U/B, POSC(D), POSB(D)
and then compare POSB(D) with POSC(D) to determine whether they are
equal to each other or not. We only calculate U/C, U

′
, U

′

pos, POS
′

B and then
compare POS

′

B with U
′

pos.

3 Particle Swarm Approach for Reduction

Given a decision table T = (U, C, D, V, f), the set of condition attributes, C,
consist of m attributes. We set up a search space of m dimension for the reduc-
tion problem. Accordingly each particle’s position is represented as a binary bit
string of length m. Each dimension of the particle’s position maps one condition
attribute. The domain for each dimension is limited to 0 or 1. The value ‘1’
means the corresponding attribute is selected while ‘0’ not selected. Each po-
sition can be “decoded” to a potential reduction solution, an subset of C. The
particle’s position is a series of priority levels of the attributes. The sequence of
the attribute will not be changed during the iteration. But after updating the
velocity and position of the particles, the particle’s position may appear real val-
ues such as 0.4, etc. It is meaningless for the reduction. Therefore, we introduce
a discrete particle swarm optimization for this combinatorial problem.

During the search procedure, each individual is evaluated using the fitness.
According to the definition of rough set reduct, the reduction solution must
ensure the decision ability is the same as the primary decision table and the
number of attributes in the feasible solution is kept as low as possible. In our
algorithm, we first evaluate whether the potential reduction solution satisfies
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POS
′

E = U
′

pos or not (E is the subset of attributes represented by the potential
reduction solution). If it is a feasible solution, we calculate the number of ‘1’
in it. The solution with the lowest number of ‘1’ would be selected. For the
particle swarm, the lower number of ‘1’ in its position, the better the fitness of
the individual is. POS

′

E = U
′

pos is used as the criterion of the solution validity.
As a summary, the particle swarm model consists of a swarm of particles,

which are initialized with a population of random candidate solutions. They
move iteratively through the d-dimension problem space to search the new solu-
tions, where the fitness f can be measured by calculating the number of condi-
tion attributes in the potential reduction solution. Each particle has a position
represented by a position-vector pi (i is the index of the particle), and a veloc-
ity represented by a velocity-vector vi. Each particle remembers its own best
position so far in a vector p#

i , and its j-th dimensional value is p#
ij . The best

position-vector among the swarm so far is then stored in a vector p∗, and its
j-th dimensional value is p∗j . When the particle moves in a state space restricted
to zero and one on each dimension, the change of probability with time steps is
defined as follows:

P (pij(t) = 1) = f(pij(t − 1), vij(t − 1), p#
ij(t − 1), p∗j(t − 1)). (8)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (9)

At each time step, each particle updates its velocity and moves to a new position
according to Eqs.(10) and (11):

vij(t) = wvij(t−1)+c1r1(p
#
ij(t−1)−pij(t−1))+c2r2(p∗j (t−1)−pij(t−1)). (10)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(11)

Where c1 is a positive constant, called as coefficient of the self-recognition com-
ponent, c2 is a positive constant, called as coefficient of the social component. r1
and r2 are the random numbers in the interval [0,1]. The variable w is called as
the inertia factor, which value is typically setup to vary linearly from 1 to near
0 during the iterated processing. ρ is random number in the closed interval [0,
1]. From Eq.(10), a particle decides where to move next, considering its current
state, its own experience, which is the memory of its best past position, and the
experience of its most successful particle in the swarm. The pseudo-code for the
particle swarm search method is illustrated in Algorithm 1..

4 Experiment Settings, Results and Discussions

In this experiment, Genetic algorithm (GA) was used to compare the perfor-
mance with PSO. The two algorithms share many similarities [29,30]. Both
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Algorithm 1. A Rough Set Reduct Algorithm Based on Particle Swarm

01.Calculate U
′
, U

′
pos using Eqs.(4) and (6).

02.Initialize the size of the particle swarm n, and other parameters.
03.Initialize the positions and the velocities for all the particles randomly.
04.While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle,
06. if POS

′
E = U

′
pos, the fitness is punished

06. as the total number of the condition attributes,
06. else the fitness is the number of ‘1’ in the position.
07. p∗ = argminn

i=1(f(p∗(t − 1)), f(p1(t)), f(p2(t)), · · · , f(pi(t)), · · · , f(pn(t)));
08. For i= 1 to n
09. p#

i (t) = argminn
i=1(f(p#

i (t − 1)), f(pi(t));
10. For j = 1 to d
11. Update the j-th dimension value of pi and vi

11. according to Eqs.(10) and (11);
12. Next j
13. Next i
14.End While.

methods are valid and efficient methods in numeric programming and have been
employed in various fields due to their strong convergence properties. In GA, the
probability of crossover is set to 0.8 and the probability of mutation is set to 0.08.
In PSO, self coefficient c1 and social coefficient c2 both are 1.49, and the inertia
weight w is decreasing linearly from 0.9 to 0.1. The size of the population in GA
and the swarm size in PSO both are set to (int)(10+2∗sqrt(D)), where D is the
dimension of the position, i.e., the number of condition attributes. In each trial,
the maximum number of iterations is (int)(0.1 ∗ recnum + 10 ∗ (nfields − 1)),
where recnum is the number of records/rows and nfields is the number of con-
dition attributes. Each experiment (for each algorithm) was repeated 3 times
with different random seeds. If the standard deviation is larger than 20%, the
times of trials would be set to larger, 10 or 20. We consider the datasets in Table
1 from AFS1, AiLab2 and UCI3.

Figs. 1, 2 and 3 illustrate the performance of the algorithms for lung-cancer,
lymphography and mofn-3-7-10 datasets, respectively. For lung-cancer dataset,
the results (the number of reduced attributes) for 3 GA runs all were 10: {1, 3,
9, 12, 33, 41, 44, 47, 54, 56} (The number before the colon is the number of con-
dition attributes, the numbers in brackets are attribute index, which represents
a reduction solution). The results of 3 PSO runs were 9: { 3, 8, 9, 12, 15, 35, 47,
54, 55}, 10: {2, 3, 12, 19, 25, 27, 30, 32, 40, 56}, 8: {11, 14, 24, 30, 42, 44, 45,
50}. For lymphography datasets, the results of 3 GA runs all were 7: {2, 6, 10,

1 http://sra.itc.it/research/afs/
2 http://www.ailab.si/orange/datasets.asp
3 http://www.datalab.uci.edu/data/mldb-sgi/data/
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13, 14, 17, 18}, the results of 3 PSO runs were 6: {2, 13, 14, 15, 16, 18}, 7: {1, 2,
13, 14, 15, 17, 18}, 7: {2, 10, 12, 13, 14, 15, 18}. For mofn-3-7-10 datasets, the
results of 3 GA runs all were 7: {3, 4, 5, 6, 7, 8, 9}, the results of 3 PSO runs all
were 7: {3, 4, 5, 6, 7, 8, 9}. Other results are shown in Table 1. PSO usually can
obtain a better result than GA, specially for a large scale problem. although GA
and PSO both got the same results, PSO usually uses only very few iterations,
as illustrated in Fig. 2.
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Fig. 1. Performance of rough set reduction for lung-cancer dataset
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Fig. 2. Performance of rough set reduction for lymphography dataset
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Fig. 3. Performance of rough set reduction for mofn-3-7-10 dataset

Table 1. Datasets used in the experiments

Dataset Size ConditionAttributes Class GA PSO

lung-cancer 32 56 3 10 8
zoo 101 16 7 5 5
corral 128 6 2 4 4
lymphography 148 18 7 6 3
hayes-roth 160 4 3 3 3
shuttle-landing-control 253 6 2 6 6
monks 432 6 2 3 3
xd6-test 512 9 2 9 9
balance-scale 625 4 3 4 4
breast-cancer-wisconsin 683 9 2 4 4
mofn-3-7-10 1024 10 2 7 7
parity5+5 1024 10 2 5 5

5 Conclusions

In this paper, we investigated the problem of finding optimal reducts using a
particle swarm optimization approach. The proposed approach discovered the
best feature combinations in an efficient way to observe the change of positive
region as the particles proceed throughout the search space. We evaluated the
performance of the proposed PSO algorithm with Genetic Algorithm (GA). The
results indicates that PSO usually required shorter time to obtain better results
than GA, specially for large scale problems, although its stability need to be im-
proved in further research. The proposed algorithm could be an ideal approach
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for solving the reduction problem when other algorithms failed to give a better
solution.
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