
Neurocomputing] (]]]])]]]–]]]
Contents lists available at SciVerse ScienceDirect
Neurocomputing
0925-23

http://d

n Corr

E-m

vaclav.s

jan.mar

ajith.ab

Pleas
j.neu
journal homepage: www.elsevier.com/locate/neucom
Analysis of strategy in robot soccer game
Jie Wu a,n, Václav Snášel a, Eliška Ochodková a, Jan Martinovič a, Václav Svatoň a, Ajith Abraham a,b

a Department of Computer Science, FEECS, VŠB - Technical University of Ostrava, 708 33 Ostrava-Poruba, Czech Republic
b Machine Intelligence Research Labs, Auburn, WA 98071, USA
a r t i c l e i n f o

Keywords:

Robot soccer

Strategy
12/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.neucom.2012.03.021

esponding author.

ail addresses: defermat2008@hotmail.com (J.

nasel@vsb.cz (V. Snášel), eliska.ochodkova@v

tinovic@vsb.cz (J. Martinovič), vaclav.svaton@

raham@ieee.org (A. Abraham).

e cite this article as: J. Wu, et al., An
com.2012.03.021
a b s t r a c t

Strategy is a kernel subsystem of robot soccer game. In our work, we present an approach to describe

the strategy of the game, based on which we explain the morphology of strategy set. Loop strategies are

likely to make robots be in a trap of executing repeated actions. We analyze the existence criterion of

loop strategies, and then present some corollaries and theorems, by which the loop strategies and chain

strategies can be found, also superfluous strategies and inconsistent strategies. We present a ranking

model that indicates the weak node in strategy set. We also present a probability-based model which is

the basis of evaluation of strategy. Additionally, we present a method to generate offensive strategy,

and the statistic results of simulation game prove the validity of the method.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Robot soccer game is an emerging field that combines artificial
intelligence and mobile robotics with the popular sport of soccer.
Robot soccer can be portrayed as a competition of advanced robot
technology within a confined space. It offers a challenging arena
to the young generation and researchers working with autono-
mous mobile robotic systems.

There are two biggest organizations in the field of robot soccer,
namely FIRA and RoboCup. They have been actively promoting
the development of soccer robotics and education in the field of
artificial intelligence. Robot soccer not only provides an experi-
mentation test bed for multi-agent robotic systems research, but
also a useful education tool for practical courses in this area. It is
helpful to knowledge integrating, teamwork, real world issues,
critical thinking and creativity.

Particularly, in robot soccer collaboration is desired so that the
group of robots work together to achieve a common goal [1]. In
robot soccer, the game situation in the playground is typically
read in terms of the robots’ postures and the ball’s position.
Naturally, good strategies are needed to decide the positions of
the team robots during the game.

In this work, we are particularly interested in the evaluation of
strategy in robot soccer game. Description of strategy is the basis
of the robot soccer game. Based on the strategic description we
ll rights reserved.

Wu),

sb.cz (E. Ochodková),

vsb.cz (V. Svatoň),

alysis of strategy in robot s
can set up strategy set. In strategy set there are many types of
strategies, such as isolated strategies, chain strategies and loop
strategies. Loop strategies could be a problem for robot soccer
game. We present the existence criterion and detection method of
loop strategies. We also present a ranking model to find the most
important strategy that could be a weak node in the strategy set.
And we present a probability-based model to estimate the
probability of goal by which we can evaluate strategies. Addi-
tionally, we present a method to generate offensive strategy, and
our experiment prove the validity of the method.

The paper is organized as follows. We review related work
within the robot soccer domain in Section 2. Section 3 introduces
our approach to describe strategy. Section 4 discusses the mor-
phology of strategy set. Section 5 focuses on the problem of loop
strategies, including existence criterion and detection of loop
strategies. Section 6 proposes a method to rank strategies by
which we can find the weak nodes in strategy set. Section 7
presents a model to evaluate strategies. Section 8 presents a
method to generate offensive strategy. Finally, Section 9 draws
the conclusions and discusses future work.
2. Related work

There are many techniques have been applied to decision-
making of robot soccer game, including Case-based Reasoning,
Learning from Observation, Reinforcement Learning, Pattern Recog-
nition, Fuzzy Theory, Neural Network, Evolutionary Algorithm,
Decision Tree, etc. Most of them are on the level of tactic which
cannot answer the question that how good are the strategies.

Case-based Reasoning (CBR) [2,3] is a family of artificial
intelligence techniques, based on human problem solving, in
occer game, Neurocomputing (2012), http://dx.doi.org/10.1016/

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
mailto:defermat2008@hotmail.com
mailto:vaclav.snasel@vsb.cz
mailto:vaclav.snasel@vsb.cz
mailto:eliska.ochodkova@vsb.cz
mailto:jan.martinovic@vsb.cz
mailto:vaclav.svaton@vsb.cz
mailto:vaclav.svaton@vsb.cz
mailto:ajith.abraham@ieee.org
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021

J. Wu et al. / Neurocomputing] (]]]])]]]–]]]2
which new problems are solved by recalling and adapting the
solutions of similar past problems. Given a new situation, the
most similar past case is retrieved and its solution is reused after
some adaptation process to match the current situation. Ros et al.
[4] applied CBR to model the action selection of a team of robots
within the robot soccer domain. Cases model the state of the
world at a given time and prescribe a ‘‘successful’’ action. A case
can be treated as a recipe that describes the state of the problem
description and the actions to perform in that solution descrip-
tion. In fact, CBR could be an experience-based system, it depends
on how good the experience is; however, CBR cannot evaluate
how successful experience it has. If the solution of similar past
problem is not good enough, the outcome might be unsatisfied.

Learning from Observation (LFO) aims at modeling agents that
learn from observing other agents and imitating their behavior. As
in CBR, the learning agent selects the most similar past observed
situation with respect to the current problem and then repro-
duces the solution performed at that time. Lam et al. [5] devel-
oped an agent behavior model based on scene recognition in the
Simulation League. The main difference between CBR and LFO is
that the learning agent is not able to improve the observed agent
since there is no feedback in the model. Similar to CBR, LFO
cannot evaluate the quality of the behavior.

Reinforcement Learning (RL) [6] is an area of machine learning
that is concerned with how an agent ought to take actions in an
environment so as to maximize some notion of cumulative
reward. Riedmiller et al. [7] proposed an approach that applies
RL to robot soccer on tactical level, such as the moves of
intercept-ball, wait at position, pass ball to teammate, shoot to
goal, etc. Kleiner et al. [8] applied RL to the Middle-Size League of
robot soccer game on skill level, such as search-ball, approach-
ball, shoot-ball, shoot-away, and so on. All these works are
focused on the robotic collaboration on the level of skills and
action selection.

Pattern Recognition has been used to solve the opponent
modeling problem in the Simulation League. Huang et al. [9]
presented an approach that, combining plan representation, plan
recognition and retrieval techniques, translates the multi-variable
information stream obtained from the observation of the dynamic
and adversarial world into streams of agents’ behaviors using
prediction and backfill techniques. Consequently, frequent beha-
vior sequences or patterns can be found by statistical dependency
test, then relevant plans can be extracted. Lattner et al. [10] and
Miene et al. [11] proposed an approach that applies unsupervised
symbolic off-line learning to a qualitative abstraction in order to
create frequent patterns in dynamic scenes.

Fuzzy Theory is another selected approach in robot soccer
game. Lee et al. [12] presented a tactics using fuzzy logic mediator
that selects proper robot action depending on the positions and
the roles of adjacent two robots. Their work is implemented and
tested by SimuroSot. Wu and Lee [13] focused their research on
the selection of five action categories within the Small-Size
League. Given a set of input variables, the output of the fuzzy
rules indicates the action to perform by the robot. The approach
only considers a single player and therefore, no cooperation can
be considered.

Neural Networks (NN) are extensively used in the field of
intelligent multi-agent systems. Jolly et al. [14] presented a
complete work in which a two-stage approach using NN for
action selection in the MiroSot League is proposed. More pre-
cisely, their work is focused on deciding which of the two robots
near the ball must go after it while the other remains as a
supporter.

Evolutionary Algorithms (EA) have been proposed in several
occasions within the RoboCup domain. Nakashima et al. [15]
proposed a method for acquiring team strategies in the
Please cite this article as: J. Wu, et al., Analysis of strategy in robot s
j.neucom.2012.03.021
Simulation League. They employed an ES-type generation update
scheme after producing new integer strings by using crossover
and mutation. They use the scores of the soccer games as
performance measure in their evolutionary method. Park et al. [16]
used evolutionary algorithms to determine the appropriate fuzzy
control rules for the path planning problem in robot soccer.

Konur et al. [17] chose decision-tree learning technique to
decide the next action in robot soccer game of Simulated League.
However, during gathering the training data, the supervisor
should have a good idea of how soccer is played in order to give
advice to the agent. The decision-tree learning could not solve this
problem.
3. Description of strategy

Description of strategy is the basis of the robot soccer game.
Many different forms of strategic description have been devel-
oped to support corresponding decision-making system. Bezek
et al. [18,19] propose a multi-agent strategic modeling of robot
soccer. In their work, the strategy is described as a combination of
agent roles, node positions and sequence of actions. Node posi-
tions correspond to agent positions in the game field that is
divided into several areas, such as left-wing, center-of-the-field,
right-wing, left-half, right-half, and so on. Huang and Liang [20]
bring forward a strategy-based decision-making system for robot
soccer game which implemented by a decision tree. In the tree,
there are 12 strategies that are clustered by ball’s position,
possession of ball, team players, etc. In [4], a case is defined by
ðP, A, KÞ, where P is the problem description, A the solution
description, and K the case scope representation. The problem
description corresponds to a set of features, including ball’s global
position, defending goal, teammates’ global positions, and oppo-
nents’ global positions, which describe the current world state.
The solution of a case corresponds to the sequences of actions
each teammate performs, such as ‘‘get the ball’’, ‘‘kick’’, or ‘‘pass
ball to robot tmi’’, and so on. All of these approaches mentioned
above contain two common elements, i.e. grid positions and
possession of ball. These common elements are also reflected in
our description of strategy.

In our work, the game is separated into logical and physical
parts [21]. The logical part includes the strategy selection,
calculation of robot movement and adaptation of rules to the
opponent’s strategy. The physical part includes robot actual
movement on the game field and recognition of the opponent
movement. The logical part is independent of the physical part
because we can calculate movements of the opponent robots as
well as movements of own robots.

By separating the game into two parts, the logical part is
independent of the field size and the resolution of the camera
used in visual information system. In the logical part, the game is
represented as an abstract grid with a very high resolution, which
ensures precise positions of robots and ball. However, this very
detailed representation of the game field is not suitable for
strategy description. Otherwise, the similar situations of the game
might be treated as different ones. Therefore, the strategy grid is
used, which has a much lower resolution than the abstract grid.
This simplification is sufficient because it is unnecessary to
know the robots precise position in the logical part. It is enough
to know the robot’s approximate position for strategy realization
(see Fig. 1). When the physical part is used, based on the game
field size and camera resolution, we only need to transform the
abstract grid into physical coordinates.

For the robot soccer game, the strategies can be treated as a
series of actions under some certain conditions that may contain
the information of position, velocity, acceleration, or posture of
occer game, Neurocomputing (2012), http://dx.doi.org/10.1016/

dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021

grid length

gr
id

 h
ei

gh
t

fie
ld

 w
id

th

field length

game field

1
2
3
4

A C E F

abstract grid strategy grid

B D

Fig. 1. Inner game representation.

Fig. 2. An example case. Fig. 3. A strategy grid.

J. Wu et al. / Neurocomputing] (]]]])]]]–]]] 3
robots, and so on. The position information, representing the
situation of both sides, is much more important than the others in
the logic part. Abstract grid, velocity, acceleration and posture of
robots are associated with motion planning and robot control
[22,23]. Apparently, motion planning and robot control are the
implementation of strategies, while the strategies should be made
through game situation. Therefore we express the game situation
by position information [24,25].

Example 1 (Family a strategy). According to strategy grid, the
strategy can be expressed easily as (M, O, B, D), where M is the
teammates’ positions of mine, O, opponents’ positions, B, ball

position, and D, my teammates’ destination grids.
�

P
j.
Mine A1 A2 B1 B2;

�
 Oppo B1 B2 C1 C2;

�
 Ball B2;

�
 Dstn A1 B2 C1 C2.
Example 1 shows a strategy stored in a log file, which
corresponds to the case shown in Fig. 2. It means ‘‘If
(M1,M2,M3,M4) is close to (A1, A2, B1, B2), and if (O1, O2, O3, O4)
is close to (B1, B2, C1, C2), and if B is close to (B2), then (M1, M2,
M3, M4Þ go to (A1, B2, C1, C2)’’. In the strategy, the first part (M, O,
B) is condition attributes, the latter part D is decision attribute. Now
if we represent the grid position by using digital coordinates, the
strategy in Example 1 can be denoted as follows.
�
 Mine 11 12 21 22;

�
 Oppo 21 22 31 32;

�
 Ball 22;

�
 Dstn 11 22 31 32.
In the field of strategy, there are two types of features,
controllable features and non-controllable features [4]. Team-
mates’ positions are controllable features because the robots can
move to more appropriate locations if needed. The ball’s and
opponents’ positions are non-controllable features because we
cannot directly modify them. The idea of separating the features
lease cite this article as: J. Wu, et al., Analysis of strategy in robot s
neucom.2012.03.021
into controllable and non-controllable ones is that the two types
of features have different significance at different moment. If the
ball is under control, the controllable features are more impor-
tant. However, if the ball is out of control, the non-controllable
features are more important. It means that if the ball is under the
control of our robot, we only need to consider how to control our
robots to next positions, it is unnecessary to care the opponents’
positions anymore; while if the ball is controlled by opponent
robot, we have to control our robot to catch the ball.

Here we ignore the ball position when we analyze the strategy
set, because the ball position must be same to one of our or
opponent robots’ position. By the control tag of the ball, the
strategies can be divided into two sets which correspond to attack
and defence respectively. It is easy to switch the team’s state
between attack and defence in this way.

Consequently, according to the strategy grid in Fig. 3, the strategy
of Example 1 can be simplified as (111100100111) that means ‘‘if M

is close to (p1, p2, p3, p4) then M goes to (p1, p4, p5, p6)’’. Here M

means (M1, M2, M3, M4Þ.

Example 2. Based on the strategy grid shown in Fig. 3, we have
the following rules. These rules can be denoted as digital numbers
in Table 1, in which the digital ‘‘1’’ means there exists only one
robot in the corresponding grid, while the digital ‘‘0’’ means there
is not any robot in the grid.
occ
Rule 1: If M is close to (p1 p2 p3 p4), then M goes to
ðp1 p4 p5 p6Þ.
Rule 2: If M is close to (p1 p2 p5 p6), then M goes to
ðp1 p2 p4 p5Þ.
Rule 3: If M is close to (p3 p4 p5 p6), then M goes to
ðp1 p2 p5 p6Þ.
Rule 4: If O is close to (p2 p3 p4 p6), then M goes to
ðp1 p2 p2 p4Þ.
Clearly, our strategic description simplifies the complexity of
strategy, reduces the cardinal number of strategy set greatly. If we
consider all controllable and non-controllable features in our
strategy, there would be about 69 strategies in the case of 3�2
er game, Neurocomputing (2012), http://dx.doi.org/10.1016/

dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021

Table 1
Strategy description of rules in Example 2.

Rules p1 p2 p3 p4 p5 p6 Destination

rule1 1 1 1 1 0 0 100111

rule2 1 1 0 0 1 1 110110

rule3 0 0 1 1 1 1 110011

rule4 0 1 1 1 0 1 120100

Table 2
A decision table.

U c1 c2 c3 c4 c5 c6 d1 d2 d3 d4 d5 d6

x1 0 0 1 1 1 1 0 1 0 1 1 1

x2 0 1 0 1 1 1 0 1 1 1 1 0

x3 0 1 1 0 1 1 0 0 1 1 1 1

x4 0 1 1 1 0 1 1 1 1 0 0 1

x5 0 1 1 1 1 0 1 0 0 1 1 1

x6 1 0 0 1 1 1 1 0 1 0 1 1

x7 1 0 1 0 1 1 0 1 1 0 1 1

x8 1 0 1 1 0 1 1 0 1 1 0 1

x9 1 0 1 1 1 0 1 1 0 0 1 1

x10 1 1 0 0 1 1 1 0 1 1 1 0

x11 0 0 1 1 1 1 0 1 0 1 1 1

x12 1 1 1 0 1 0 0 0 1 1 1 1

x13 1 0 0 1 1 1 1 1 0 1 0 1

x1 x2

x5

x6x7

x3

x9 x10

x8x4

(x11)

x13

x12

Fig. 4. A simple example of loop strategy detection.

J. Wu et al. / Neurocomputing] (]]]])]]]–]]]4
strategy grid. Obviously, it is impossible to enumerate all these
strategies, even though sorted by some certain similarity algo-
rithm, the number is still very huge. Therefore, it is necessary to
reduce the description of strategy.
4. Morphology of strategy set

A directed graph [26,27] or, for short, a digraph is a pair
G¼ ðV ,EÞ consisting of a finite set V and a set E of ordered pairs
(a,b), where aab are elements of V. The elements of V are called
vertices, those of E edges.

A group of strategies can be drawn as a digraph, in which a
vertex represents a strategy (or a rule), the direction of edge
indicates that execution of the head strategy would lead to
executing the tail strategy. Table 2 shows a strategy set contain-
ing 13 rules. The corresponding digraph is shown as Fig. 4.

According to the digraph, we can find that there are three
types of strategies in strategy set. In Fig. 4, x4 is an isolated

strategy, which means there is no other strategy connects up x4,
and x4 does not connect up any other strategy; x122x12x22

x52x13 constitute chain strategies; x12x22x52x62x72x32x1 con-
stitute loop strategies.

About the loop strategies, there are three types again. The first
one is self-loop strategy, such as x8; the second type is two-
component loop strategies which are constituted by two strate-
gies, such as x9 and x10; the third one is formed by more than
two strategies, called multi-component loop strategies, such as
Please cite this article as: J. Wu, et al., Analysis of strategy in robot s
j.neucom.2012.03.021
x12x22x52x62x72x32x1. If we cast off any one strategy in the
third type of loop strategies, we can obtain a chain strategies.

In the digraph of Fig. 4, x11 is same to x1, they are superfluous
rules; x13 and x6 have the same condition attribute but different
decision attribute, therefore they are inconsistent rules.

As in the digraph, there also exist superfluous strategies and
inconsistent strategies in strategy set. Two strategies are super-
fluous strategies means they are totally same, including the same
condition attributes and the same decision attributes. Two stra-
tegies are inconsistent strategies means they have the same
condition attribute but different decision attribute. The super-
fluous strategies and inconsistent strategies can be detected by
rough set theory, and by condition-decision relation matrix too.
For details of condition–decision relation matrix, see Section 5.
Due to space limitation, we just illustrate the application of rough
set theory in detecting superfluous strategies and inconsistent
strategies (Table 2).

According to indiscernibility relation in rough set theory, we
can get the following relations:

INDðfc1gÞ ¼ ffx1,x2,x3,x4,x5,x11g,fx6,x7,x8,x9,x10,x12,x13gg, ð1Þ

INDðfc2gÞ ¼ ffx1,x6,x7,x8,x9,x11,x13g,fx2,x3,x4,x5,x10,x12gg, ð2Þ

INDðfc3gÞ ¼ ffx2,x6,x10,x13g,fx1,x3,x4,x5,x7,x8,x9,x11,x12gg, ð3Þ

INDðfc4gÞ ¼ ffx3,x7,x10,x12g,fx1,x2,x4,x5,x6,x8,x9,x11,x13gg, ð4Þ

INDðfc5gÞ ¼ ffx4,x8g,fx1,x2,x3,x5,x6,x7,x9,x10,x11,x12,x13gg, ð5Þ

INDðfc6gÞ ¼ ffx5,x9x12g,fx1,x2,x3,x4,x6,x7,x8,x10,x11,x13gg, ð6Þ

and

INDðfc1,c2,c3,c4,c5,c6gÞ ¼ ffx1,x11g,fx6,x13g,fx2g,fx3g,fx4g,

fx5g,fx7g,fx8g,fx9g,fx10g,fx12gg: ð7Þ

Similarly, we have

INDðfd1,d2,d3,d4,d5,d6gÞ ¼ ffx1,x11g,fx2g,fx3g,fx4g,fx5g,fx6g,

fx7g,fx8g,fx9g,fx10g,fx12g,fx13gg: ð8Þ

Obviously, x1 and x11 are superfluous strategies, while x6 and x13

are inconsistent strategies.
5. Loop strategies

Based on the strategy description, because the strategies can
be treated as a series of actions, there is a possibility of automatic
strategy extraction from the game log file. It is easy to record the
game process in real time, and then some data can be selected
from the record file. By adding these selected data, or called rules,
to the antecedent of rules set, a new strategy set is created.

However, the new selected rules are likely indiscernible or
inconsistent with the original rules, which is reflected in three
aspects. The first one is some of the new rules might be super-
fluous data, which means the new data have same condition and
same decision to some certain rules in the antecedent of rules set.
This kind of superfluous data should be deleted from the rules set.
The second one is some of the new rules come into conflict with
the original rules. For example, a new rule and an old rule hold
the same position condition but different destination grid. In this
case, it is necessary to identify the conflictive rules, since they
indicate different decisions for the same conditions, and divergent
decisions might lead to different follow-up situation of game. The
third one is some new selected rules and some old rules form a
cycle, called loop strategies. In robot soccer game, the loop
strategies would make robots be in a trap of executing repeated
actions. Fig. 5 shows a simple situation of repeated action in robot
soccer simulation, in which the white arrow indicates the robot’s
occer game, Neurocomputing (2012), http://dx.doi.org/10.1016/

dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021

Fig. 5. Repeated action in robot soccer game.

Table 3
An example of loop strategies.

U c1 c2 c3 c4 c5 c6 d1 d2 d3 d4 d5 d6

x1 0 0 1 1 1 1 0 1 0 1 1 1

x2 0 1 0 1 1 1 0 1 1 1 1 0

x3 0 1 1 0 1 1 0 0 1 1 1 1

x4 0 1 1 1 1 0 1 0 0 1 1 1

x5 1 0 0 1 1 1 1 0 1 0 1 1

x6 1 0 1 0 1 1 0 1 1 0 1 1

x1 x2

x4

x5x6

x3

x1 x2

x3

x4x5

x6

Fig. 6. An example of digraph.

J. Wu et al. / Neurocomputing] (]]]])]]]–]]] 5
movement direction. Apparently, endless repeated actions are
harmful to the game. We must know which rules constitute loop
strategies. When the game goes into loop strategies, we must do
something to prevent the game from endless repeated actions.
5.1. Existence criterion of loop strategies

Before we begin to discuss the existence criterion of loop
strategies, we introduce the concept of condition–decision rela-
tion matrix firstly.

Definition 1. Let information system A¼ ðU,C [DÞ be given,
U ¼ fx1, . . . ,xng, n¼ 9U9, VC¼VD. The condition–decision relation
matrix, or C–D matrix, denoted as RCD ¼ ½rij�, is an n� n matrix,
where

rij ¼
1 if DðxiÞ ¼ CðxjÞ, i, j¼ 1, . . . , n,

0 otherwise:

(

In Definition 1, DðxiÞmeans the sequence of decision attributes
over object xi, CðxjÞ means the sequence of condition attributes
over object xj. VC and VD are domain of condition set and domain
of decision set, respectively.

An example of loop strategies is illustrated in Table 3.
Fig. 6(a) shows the corresponding digraph. According to the
concept of condition–decision relation matrix, the loop strategies
Please cite this article as: J. Wu, et al., Analysis of strategy in robot s
j.neucom.2012.03.021
in Table 3 can be expressed as the following matrix:

RCD ¼

0 1 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

2
666666664

3
777777775
: ð9Þ

In fact, each matrix that describes loop strategies can be
transformed into a matrix with the following form:

Jk ¼

0 1

0 &

& 1

1 0

2
6664

3
7775

k�k

: ð10Þ

To get this type of matrix, the only thing we need to do is to
relabel the rules in strategy set. This operation can be realized by
permutation matrix [28]. For example, in Fig. 6(a) the permuta-
tion can be expressed in two-line form by

x1 x2 x4 x5 x6 x3

x1 x2 x3 x4 x5 x6

 !
:

Then the corresponding permutation matrix is

Pp ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

2
666666664

3
777777775
:

Consequently, the permutation operation results in

PpX ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

2
666666664

3
777777775

x1

x2

x3

x4

x5

x6

2
6666666664

3
7777777775
¼

x1

x2

x6

x3

x4

x5

2
6666666664

3
7777777775
:

Finally, we relabel x4 as x3, x5 as x4, x6 as x5, and x3 as x6, then we
get Fig. 6(b), by which we can obtain a new relation matrix as
follows:

JCD ¼

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

2
666666664

3
777777775

, ð11Þ

where the corresponding eigenvalues are l1 ¼ 1, l2 ¼ 0:5þ0:866i,
l3 ¼�0:5þ0:866i, l4 ¼�1, l5 ¼�0:5�0:866i, l6 ¼ 0:5�0:866i.
occer game, Neurocomputing (2012), http://dx.doi.org/10.1016/

dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021

Fig. 7. Eigenvalues of RCD on the complex plane.

J. Wu et al. / Neurocomputing] (]]]])]]]–]]]6
These eigenvalues can be drawn as six points on the complex
plane. Apparently, these points divide the unit circle on the
complex plane into six equivalent parts, which means there are
six rules that constitute loop strategies. Fig. 7 shows this
situation.

Generally speaking, the matrix of Jk with the form in Eq. (10)
has eigenvalues which satisfy the following equation:

ð�lÞk�ð�1Þk ¼ 0: ð12Þ

The eigenvalues can be drawn as points on the complex plane.
These points divide the unit circle on the complex plane into k

equivalent parts.
Now, if we delete a rule from the loop strategies, the rest rules

would form chain strategies, and the new condition–decision
relation matrix will be Jordan normal form. For example, if we
delete any one rule from Table 3, the rest five rules will become
chain strategies, the corresponding condition–decision relation
matrix is

JnCD ¼

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

2
6666664

3
7777775
: ð13Þ

Apparently, JnCD is the Jordan normal form, its eigenvalue is 0.
Therefore we can conclude that, the condition–decision relation
matrix of loop strategies always has non-zero eigenvalues, and all
the eigenvalues of non-loop strategies’ relation matrix are zero.

Additionally, there is another important thing we should
notice. The matrix of Jk with the form in Eq. (10) is a column-

stochastic matrix, because Jk is a square matrix, all of its entries are
nonnegative and the entries in each column sum to 1. We should
notice that every column-stochastic matrix has 1 as an eigenva-
lue, which is helpful to count the numbers of rules that constitute
loop strategies.
5.2. Detection of loop strategies

There are already well-known cycle detection algorithms in
graph theory, while all of them are based on special measures,
such as the distance matrix and shortest path in cycles of negative
length [26]. Before establishing the concept of these special
measures, those existing algorithms could not be applied to
Please cite this article as: J. Wu, et al., Analysis of strategy in robot s
j.neucom.2012.03.021
detect loop strategies. Consequently, we need to find a novel
method to detect the loop strategies.

Now we consider a new matrix S¼ RCDþRt
CD, where Rt

CD is the
transpose of RCD, then we can obtain the following corollaries,
lemmas and theorem. Due to space limitation, we do not prove
them.

Corollary 1. Let iA ½1,n�, if sii ¼ 2, then xi is a self-loop strategy.

Corollary 2. The matrix S is a symmetric matrix.

Corollary 3. Let i, jA ½1,n�, ia j, if sij ¼ 2, then rij ¼ rji ¼ 1, xi and xj

constitute loop strategies.

Corollary 4. Let i, jA ½1,n�, ia j, if there exists kA ½1,n�, such that

rik ¼ rjk ¼ 1, then ri� ¼ rj�.

Corollary 5. Let u,vA ½1, n�, uav, if there exists iA ½1, n�, such that

riu ¼ riv ¼ 1, then r�u ¼ r�v.

In Section 4, we have known that the loop strategies have
three types, that is, self-loop strategy, two-component loop
strategies and multi-component loop strategies. Corollary 1
indicates that self-loop strategy would make the corresponding
main diagonal element of S to be 1. Corollary 2 is the basis of
Corollary 3 that shows how to detect two-component loop
strategies. Corollaries 4 and 5 depict the characters of superfluous
and inconsistent data. Now we consider xu and xv. For the
superfluous data, they have the same condition attributes and
the same decision attributes, which means r�u ¼ r�v and ru� ¼ rv� if
their entries are not all zero. For the inconsistent data, they have
the same condition attributes and different decision attributes,
which means r�u ¼ r�v and ru�arv� if their entries are not all zero.
Consequently, we can deduce that if r�u ¼ r�v and if their entries
are not all zero, xu and xv must be the data with problems.

In order to detect multi-component loop strategies, we assume
that superfluous and inconsistent objects have been deleted from
the universe in the following discussion.

Before we discuss the next theorem about detection of loop
strategies, firstly we introduce an important concept of chain

strategy, which will be helpful to understand the detection of loop
strategies. As we know, the loop strategies form a cycle of action.
If we cut the cycle, we would get a chain. The chain strategies
form a series of consecutive actions.

Definition 2. Let A¼ ðU,C [DÞ, VC¼VD, if DðxaÞ ¼ CðxbÞ, then we
say fxa,xbg are directed strategies, xa and xb are connectible, more
precisely, xa connects up xb; if DðxaÞaCðxbÞ, then xa does not
connect up xb.

Definition 3. Let A¼ ðU,C [DÞ, 9U9¼ n, VC¼VD. Suppose there
exists a sequence of objects fx1, x2, . . . , xmg such that Dðx1Þ ¼ Cðx2Þ,
Dðx2Þ ¼ Cðx3Þ, . . ., Dðxm�1Þ ¼ CðxmÞ and mrn, i.e. fx1, x2, . . . , xmg are
directed strategies. If xm does not connect up x1, then fx1, x2, . . . , xmg

are chain strategies, x1 is head of the chain, fx2, . . . ,xm�1g are bodies of
the chain, xm is tail of the chain. If xm connects up x1, then
fx1, x2, . . . , xmg are loop strategies.

Definitions 2 and 3 help to understand the chain strategies,
and we can deduce the following lemmas according to them.

Lemma 1. Let A¼ ðU,C [DÞ, xi, xjAU, and matrix RCD is given. Then

xi connects up xj iff rij ¼ 1.

Lemma 2. Let A¼ ðU,C [DÞ, xi, xjAU, and matrix S is given. Then xi

and xj are connectible iff sijZ1.

Lemma 3. Let A¼ ðU,C [DÞ, 9U9¼ n, and matrix S is given. Let

iA ½1,n�, then xi belongs to the body of chain strategies iff there are

two entries with the value of1 in the ith row (or column) of matrix S.
occer game, Neurocomputing (2012), http://dx.doi.org/10.1016/

dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021

J. Wu et al. / Neurocomputing] (]]]])]]]–]]] 7
Connection is the key of chain strategies. Lemmas 1 and 2
indicate the relationship of two objects, we can judge whether
two objects are connected according to them. In addition,
together with the definitions, they become the basis of Lemma
3 which makes clear the significant step for the proof of the
following theorem.

Theorem 1. Let A¼ ðU,C [DÞ, matrix S is given, xi is a body of chain

strategies, and siu ¼ siv ¼ 1. The all chain strategies are loop strategies

iff for all body xi, the xu and xv are bodies too.

Theorem 1 shows that, for each object xi in a loop, there are
two entries with the value of 1 in the ith row (or column) of
matrix S, these two entries correspond to the head and tail of xi

respectively. Informally speaking, Theorem 1 means that, in loop
strategies, everybody is a head, and everybody is a tail.

Based on the corollaries and theorem above, it is easy to find
out loop strategies by observing matrix S. Corollary 1 shows that
the self-loop strategy only lies in the main diagonal of the matrix
S. Corollary 3 expounds the situation that two rules constitute
loop strategies. Theorem 1 explains how to detect the loop
strategies constituted by multi-rules.
6. Ranking of strategies

Bryan and Leise [29] rank the importance of web pages
according to an eigenvector of a weighted link matrix. This model
is helpful to rank strategies. But strategy ranking is different to
page ranking.

In [29], a core idea in assigning an importance score to any
given web page is that the page’s score is derived from the links
made to that page from other web pages. The links to a given page
are called the backlinks for that page. The web thus becomes a
democracy where pages vote for the importance of other pages by
linking to them.

While in strategy ranking, the strategy that has more links to

other strategies is more important because that strategy has more
influence on the process of game, the game situation is mostly
depends on the follow-up execution of that strategy. In other
words, the strategy becomes a power where strategy influence
other strategies by linking to them. In addition, this kind of
strategy is a hub because many other strategies have to be
achieved through it. The links to other strategies are called
forwardlinks for the hub strategy. If we can destroy opponent’s
hub strategy, then we eliminate most of the follow-up rules of
opponent, and vice versa.

Suppose the strategy set of interest contains n strategies, each
strategy indexed by an integer k, 1rkrn. An example is
illustrated in Fig. 8, in which there are four strategies, an arrow
from strategy A to strategy B indicates a link from strategy A to
strategy B. Such a strategy set is an example of a directed graph.
We use xk to denote the importance score of strategy k in the set.
1

2

3

4

Fig. 8. An example of a strategy set with only four strategies.

Please cite this article as: J. Wu, et al., Analysis of strategy in robot s
j.neucom.2012.03.021
xk is nonnegative, xj4xk indicates that strategy j is more impor-
tant than strategy k, and xj¼0 indicates that strategy j has the
least possible importance score.

A very simple approach is to take xk as the number of
forwardlinks for strategy k. In the example in Fig. 8, we have
x1 ¼ 3, x2 ¼ 2, x3 ¼ 1, and x4 ¼ 2, so that strategy 1 is the most
important, strategies 2 and 4 tie for second, and strategy 3 has the
least importance. A link from strategy k becomes a power for
strategy k’s importance.

This very simple approach ignores an important fact that a link
from strategy k to an important strategy should boost strategy k’s
importance score more than a link to an unimportant strategy. For
example, in the strategy set of Fig. 8, strategies 2 and 4 both have
two forwardlinks: each links to the other, but strategy 4’s second
forwardlink is to the seemingly important strategy 1, while
strategy 2’s second forwardlink is to the relatively unimportant
strategy 4. As such, perhaps we should rate strategy 4’s impor-
tance higher than that of strategy 2.

The most fundamental problem of the simple approach men-
tioned above is that a single individual could gain influence
merely by sending out multiple arrows. Therefore, we seek a
scheme in which a strategy does not gain extra influence simply
by linking to lots of other strategies. If strategy j contains nj

backlinks, one of which links from strategy k, then we will boost
strategy k’s score by xj=nj, rather than by 1. To quantify a set of n

strategies, let Lk � f1,2, . . . ,ng denote the set of strategies with a
backlink from strategy k, that is, Lk is the set of strategy k’s
forwardlinks. For each k we require

xk ¼
X
jA Lk

xj=nj,

where nj is the number of forwardlinks to strategy j (which must
be positive since if jALk, then strategy j links from at least
strategy k). We will assume that a link from a strategy to itself
will not be counted, and we should delete this kind of self-loop
strategy from strategy set because it is harmful to the robot’s
action, which would make robots be in a trap of executing
repeated actions.

Now we go back to the example in Fig. 8 again. For strategy 1,
we have x1 ¼ x2=1þx3=3þx4=2, since strategies 2, 3 and 4 are
forwardlinks for strategy 1 and strategy 2 contains only one link,
strategy 3 assembles three links, while strategy 4 receives two
links. Similarly, x2 ¼ x3=3þx4=2, x3 ¼ x1=2, x4 ¼ x1=2þx3=3. These
linear equations can be written as

0 1 1
3

1
2

0 0 1
3

1
2

1
2 0 0 0
1
2 0 1

3 0

2
666664

3
777775

x1

x2

x3

x4

2
66664

3
77775¼

x1

x2

x3

x4

2
66664

3
77775: ð14Þ

In this case we obtain x1¼0.3750, x2¼0.1875, x3¼0.1875,
x4¼0.2500. Thus strategy 1 gets the highest importance score.

It should be noted that the node with highest importance score
may be foible of the system. Opponent may hinder the imple-
mentation of our strategy by attacking this node, and vice versa.
7. Evaluation of strategy

Game strategies can be represented as a digraph as shown in
Fig. 9, in which the nodes 1–3 are opponent positions. In addition,
the nodes 1, 2 and 3 can be considered as event1, 2 and 3,
respectively. Event i means the robots stand at the position
corresponding to node i. Each arrow pointing to event j from
event i represents a rule, rij, that the decision attribute would be
position j under the condition of position i.
occer game, Neurocomputing (2012), http://dx.doi.org/10.1016/

dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021

1 3

2

Fig. 9. A digraph of a game.

Table 4
Redset—strategy set of red team.

Rule Mine Oppo Ball Dstn

01 21243233 42435154 43 31334243

02 31334243 33425253 42 32435253

03 32435253 43525354 53 33536263

04 23313243 42435253 31 33414253

05 33414253 41425152 41 41435152

06 42435152 41425152 42 52525362

07 42525253 51525252 52 43536263

08 32334243 33424344 43 42435253

09 22232323 23323334 33 22233233

10 12222333 13233233 23 12132323

J. Wu et al. / Neurocomputing] (]]]])]]]–]]]8
The probability of event i, denoted by P(i), means the prob-
ability of robots’ standing at the position i. The probability Pðj9iÞ
denotes the probability of rule rij being selected:

Pð1Þ ¼ Pð193ÞPð3Þ, ð15Þ

Pð2Þ ¼ Pð291ÞPð1Þ, ð16Þ

Pð3Þ ¼ Pð391ÞPð1ÞþPð392ÞPð2Þ, ð17Þ

Pð1ÞþPð2ÞþPð3Þ ¼ 1, ð18Þ

Pð193Þ ¼ 1, ð19Þ

Pð392Þ ¼ 1, ð20Þ

Pð291ÞþPð391Þ ¼ 1: ð21Þ

These linear equations can be written as

Ax¼ x, ð22Þ

where

A¼

0 0 Pð193Þ

Pð291Þ 0 0

Pð391Þ Pð392Þ 0

2
64

3
75, x¼

Pð1Þ

Pð2Þ

Pð3Þ

2
64

3
75:

Definition 4. A square matrix is called a column-stochastic matrix
if all of its entries are nonnegative and the entries in each column
sum to 1.

Proposition 1. Every column-stochastic matrix has1 as an

eigenvalue.

Proof. Let A be an n� n column-stochastic matrix and let e denote
an n-dimensional column vector with all entries equal to 1. Recall
that A and its transpose AT have the same eigenvalues. Since A is
column-stochastic, it is easy to see that AT e¼ e, so that 1 is an
eigenvalue for AT and hence for A.

Proposition 1 shows there must exist a solution of Eq. (22).
Apparently, the matrix A has the eigenvalue

l¼ 1: ð23Þ

A decision-making is a non-preference decision-making if the
rule is selected stochastically at the node with multiple options.
Otherwise, it would be preference decision-making.

Before game starting, we know nothing about the opponent. So
we can assume that they select their rules stochastically if there
are multiple options at a certain node. For example, we can
assume that Pð291Þ ¼ Pð391Þ ¼ 0:5 in Eq. (22). Then the eigenvector
with eigenvalue 1 for matrix A is

x¼

Pð1Þ

Pð2Þ

Pð3Þ

2
64

3
75¼

0:4

0:2

0:4

2
64

3
75: ð24Þ

After a period of time, when we get some records of opponent
behaviors, we can count the number of times an event has
Please cite this article as: J. Wu, et al., Analysis of strategy in robot s
j.neucom.2012.03.021
occurred, then we can obtain the probability of that event. If the
statistic probability is unequal to the probability calculated by
Eq. (22), then opponent would do their selection as preference
decision-making. Apparently, according to the statistic probabil-
ity we can calculate the unknown conditional probability, based
on which we can predict the opponent behaviors.

Now we should add some special nodes to the digraph, such as
start node, penalty kick, free kick, goal-kick, free-ball, and so on.
According to the probability-based model presented above, we
can predict the opponent behaviors, calculate the probability of
goal score, based on which we can evaluate strategies, because
good strategies could achieve good results. It means better
strategies would achieve higher probability of goal score.
8. Generation of offensive strategy

Robot soccer simulator is a good test bed for strategy set. In
the simulator, two teams, such as red and blue team, will share
the same strategy selection algorithm, prediction of movement,
tactics, and so on, which would eliminate the impact of the
simulator, and distinctly display differences between the two
strategy sets.

According to the game simulation result, it is easy to know
which strategy set is better, because the better strategy set could
achieve better competition result. In the game log file, we can find
the process of goal, which is useful to improve the generation of
strategy set. For example, we can find the last action before goal
score in the log file of game, and then transform it to be an
offensive strategy.

Tables 4 and 5 show the strategy sets of red and blue team,
named Redset and BluesetI, respectively. In the strategy set of red
team, there are 10 strategies, while 34 strategies in blue team.
Table 6 lists the results of 10 games between Redset and BluesetI,
where blue team got three wins, five defeats and two ties, with
five gains and seven loss balls.

In the first game, the last action before red team made score
can be represented as follows:
�

occ
Mine 42 53 62 63;

�
 Oppo 13 42 42 53;

�
 Ball 63;

�
 Dstn 42 53 63 63.
which can be added as a new strategy to the strategy set, and then
the blue team get a new strategy set BluesetII. Table 7 lists the
results of 10 games between Redset and BluesetII, where blue
team got eight wins and two ties, with 11 gains and only two loss
balls. Apparently, the strategy set of blue team is improved
greatly by the last strategy that greatly enhances blue team’s
offensive.
er game, Neurocomputing (2012), http://dx.doi.org/10.1016/

dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021

Table 5
BluesetI—strategy set of blue team.

Rule Mine Oppo Ball Dstn

01 21243233 42435154 32 22334243

02 22334243 42435154 42 22335253

03 22335253 51525254 52 32335253

04 32335362 51525254 62 32335362

05 21243233 42435154 43 21243233

06 21243233 42435154 33 22334243

07 22334243 42435154 43 32335253

08 32335253 51525354 53 32335253

09 32335263 51525354 63 32335263

10 21243233 42435154 43 21243233

11 21243233 32435154 32 22232432

12 22232432 32335253 32 22232431

13 22232431 32335253 22 22232431

14 22232431 22235253 22 22243133

15 22243133 32335253 33 21222324

16 21222324 32335253 23 21243233

17 32333353 31323334 53 32323353

18 32323352 31323334 52 32323362

19 32323362 31323334 62 32323362

20 32323353 31323334 53 32323363

21 32323363 31323334 63 32323363

22 41424344 23424343 23 41424344

23 41424344 13424343 13 41424344

24 41424344 22424343 22 41424344

25 41424344 12424343 12 41424344

26 32335263 51525354 63 32335253

27 32335253 51525354 44 32344244

28 32344244 41434452 44 22233334

29 22233334 41434452 34 22233334

30 22233334 31323442 34 22232434

31 22232434 31323442 34 22232434

32 32335253 51525354 62 32335243

33 32334352 51525354 52 32334243

34 32334243 41424453 42 22233233

Table 6
Redset vs BluesetI.

Team Score

Red 1 0 1 0 0 2 0 2 1 0

Blue 0 0 0 1 1 1 2 0 0 0

Table 7
Redset vs BluesetII.

Team Score

Red 0 1 0 0 0 0 0 1 0 0

Blue 1 2 1 1 0 2 1 1 1 1

J. Wu et al. / Neurocomputing] (]]]])]]]–]]] 9
9. Conclusions and future work

In this work, we discuss the strategies of robot soccer game in
detail. Firstly, we present the description of strategy, describe the
morphology of strategy set. Secondly, we analyze the existence
criterion of loop strategies, and then present some corollaries and
theorems, based on which the loop strategies and chain strategies
can be found, also superfluous strategies and inconsistent strate-
gies. After we make clear the structure of strategy set, the
importance of every strategy in the strategy set could be com-
puted based on ranking model. Consequently, we can distinguish
the important strategies from the others. We should pay more
attention to the strategies with high importance score. Based on
the idea that good strategy would increase the probability of
victory, together with the probability-based model presented in
Section 7, we can evaluate the strategies. Additionally, we present
Please cite this article as: J. Wu, et al., Analysis of strategy in robot s
j.neucom.2012.03.021
a method to generate offensive strategy, and the statistic results
of simulation game prove the validity of the method.

As future work, we are interested in integrating the ranking
model and probability-based model with robot soccer simulator
since as we could predict the follow-up game situation to some
extent, we could select strategy more suitably. Hence, by inte-
grating both approaches, we can benefit from their advantages.

Strategies are different to strategy set. Combination of strate-
gies plays an important role to the performance of strategy set.
We believe that evolutionary algorithms could be helpful to find
good combination of strategies so that the performance of
strategy set could be improved.
Acknowledgment

This work was supported by the European Regional Develop-
ment Fund in the IT4Innovations Center of Excellence project
(CZ.1.05/1.1.00/02.0070).
References

[1] J. Kim, D. Kim, Y. Kim, K. Seow, Soccer Robotics, vol. 11, Springer Verlag, 2004.
[2] J. Kolodner, An introduction to case-based reasoning, Artif. Intell. Rev. 6

(1992) 3–34.
[3] A. Aamodt, E. Plaza, Case-based reasoning: Foundational issues, method-

ological variations, and system approaches, AI Commun. 7 (1994) 39–59.
[4] R. Ros, J. Arcos, R. Lopez de Mantaras, M. Veloso, A case-based approach

for coordinated action selection in robot soccer, Artif. Intell. 173 (2009)
1014–1039.

[5] K. Lam, B. Esfandiari, D. Tudino, A scene-based imitation framework
for robocup clients, in: Workshop on Modeling Other Agents from Observa-
tions, AAAI-06, AAAI Press, Boston, MA, USA, 2006.

[6] R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning, 1st edition,
MIT Press, Cambridge, MA, USA, 1998.

[7] M.A. Riedmiller, A. Merke, D. Meier, A. Hoffman, A. Sinner, O. Thate, R.
Ehrmann, Karlsruhe brainstormers—a reinforcement learning approach to
robotic soccer, in: RoboCup 2000: Robot Soccer World Cup IV, Lecture Notes
in Computer Science, vol. 2019, Springer-Verlag, London, UK, 2000, pp. 367–
372.

[8] A. Kleiner, M. Dietl, B. Nebel, Towards a life-long learning soccer agent, in:
RoboCup 2002: Robot Soccer World Cup VI, Lecture Notes in Computer
Science, vol. 2752, Springer, 2003, pp. 126–134.

[9] Z. Huang, Y. Yang, X. Chen, An approach to plan recognition and retrieval for
multi-agent systems, in: Workshop on Adaptability in Multi-Agent Systems,
First RoboCup Australian Open, AORC2003, CSIRO, 2003.

[10] A.D. Lattner, A. Miene, U. Visser, O. Herzog, Sequential pattern mining for
situation and behavior prediction in simulated robotic soccer, in: RoboCup
2005: Robot Soccer World Cup IX, Lecture Notes in Computer Science, vol.
4020, Springer, 2005, pp. 118–129.

[11] A. Miene, U. Visser, O. Herzog, Recognition and prediction of motion
situations based on a qualitative motion description, in: RoboCup 2003:
Robot Soccer World Cup VII, Lecture Notes in Computer Science, vol. 3020,
Springer, 2003, pp. 77–88.

[12] J. Lee, D. Ji, W. Lee, G. Kang, M. Joo, A tactics for robot soccer with fuzzy logic
mediator, in: Computational Intelligence and Security, CIS 2005, Springer,
Xi’an, China, 2005, pp. 127–132.

[13] C. Wu, T. Lee, A fuzzy mechanism for action selection of soccer robots,
J. Intelligent Robotic Syst. 39 (2004) 57–70.

[14] K. Jolly, K. Ravindran, R. Vijayakumar, R. Sreerama Kumar, Intelligent decision
making in multi-agent robot soccer system through compounded artificial
neural networks, Robotics Autonomous Syst. 55 (2007) 589–596.

[15] T. Nakashima, M. Takatani, M. Udo, H. Ishibuchi, M. Nii, Performance
evaluation of an evolutionary method for robocup soccer strategies, in:
RoboCup 2005: Robot Soccer World Cup IX, Lecture Notes in Computer
Science, vol. 4020, Springer, 2005, pp. 616–623.

[16] J. Park, D. Stonier, J. Kim, B. Ahn, M. Jeon, Recombinant rule selection in
evolutionary algorithm for fuzzy path planner of robot soccer, in: Advances
in Artificial Intelligence, KI 2006, Springer, 2007, pp. 317–330.

[17] S. Konur, A. Ferrein, E. Ferrein, G. Lakemeyer, Learning decision trees for
action selection in soccer agents, in: Workshop on Agents in Dynamic and
Real-time Environments, ECAI 2004, IOS Press, Valencia, Spain, 2004.

[18] A. Bezek, Discovering strategic multi-agent behavior in a robotic soccer
domain, in: Autonomous Agents and Multiagent Systems, AAMAS’05, ACM,
New York, NY, USA, 2005, pp. 1177–1178.

[19] A. Bezek, M. Gams, I. Bratko, Multi-agent strategic modeling in a robotic
soccer domain, in: Autonomous Agents and Multiagent Systems, AAMAS’06,
ACM, New York, NY, USA, 2006, pp. 457–464.
occer game, Neurocomputing (2012), http://dx.doi.org/10.1016/

dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021

J. Wu et al. / Neurocomputing] (]]]])]]]–]]]10
[20] H. Huang, C. Liang, Strategy-based decision making of a soccer robot system
using a real-time self-organizing fuzzy decision tree, Fuzzy Sets Syst. 127
(2002) 49–64.

[21] J. Martinovič, V. Snášel, E. Ochodková, L. Zo"tá, J. Wu, A. Abraham, Robot
soccer—strategy description and game analysis, in: Modelling and Simulation,
ECMS 2010, Kuala Lumpur, Malaysia, pp. 265–270.

[22] K.G. Jolly, R. Sreerama Kumar, R. Vijayakumar, An artificial neural network
based dynamic controller for a robot in a multi-agent system, Neurocomput-
ing 73 (2009) 283–294.

[23] R. Kala, A. Shukla, R. Tiwari, Robotic path planning in static environment
using hierarchical multi-neuron heuristic search and probability based
fitness, Neurocomputing 74 (2011) 2314–2335.

[24] B. Horák, M. Obitko, J. Smid, V. Snášel, Communication in robotic soccer
game, in: B.J. d’Auriol (Ed.), Communications in Computing, CSREA Press, Las
Vegas, NV, USA, 2004, pp. 295–301.

[25] V. Srovnal, B. Horák, R. Bernatı́k, V. Snášel, Strategy extraction for mobile
embedded control systems apply the multi-agent technology, in: M. Bubak,
G.D. van Albada, P.M.A. Sloot, J. Dongarra (Eds.), Computational Science, ICCS
2004, Lecture Notes in Computer Science, vol. 3038, Springer, Krakow,
Poland, 2004, pp. 631–637.

[26] D. Jungnickel, Graphs, Networks and Algorithms, vol. 5, Springer Verlag,
2008.

[27] J. Bondy, U. Murty, Graph Theory, Graduate Texts in Mathematics, vol. 244,
Springer, New York, 2008.

[28] I. Bronshtein, K. Semendyayev, K. Hirsch, Handbook of Mathematics,
Springer, New York, NY, 2007.

[29] K. Bryan, T. Leise, The $25,000,000,000 eigenvector: the linear algebra behind
google, SIAM Rev. 48 (2006) 569–581.
Jie Wu received the M.Eng. degree from Hubei Uni-
versity of Technology, China. At present he is a Ph.D.
student in VŠB - Technical University of Ostrava, Czech
Republic, major in applied mathematics and informa-
tion technology. He works in a multi-disciplinary
environment involving artificial intelligence, rough
set theory, graph theory, electrical engineering, etc.
Václav Snášel has over 25 years of research experi-
ence. He works in a multi-disciplinary environment
involving artificial intelligence, multidimensional data
indexing, conceptual lattice, information retrieval,
semantic web, knowledge management, data com-
pression, machine intelligence, neural network, web
intelligence, data mining and applied to various real
world problems. He has given more than 20 plenary
lectures and conference tutorials in these areas. He has
authored/co-authored several refereed journal/confer-
ence papers and book chapters. He has published more
than 400 papers and 147 are recorded at Web of

Science.
Eliška Ochodková is an assistant professor at the
Department of Computer Science, Faculty of Electrical
Engineering and Computer Science, VŠB - Technical
University of Ostrava, Czech Republic. Her research
interests include combinatorics, complex networks,
graph theory, robot soccer, computer security and
cryptography.
Please cite this article as: J. Wu, et al., Analysis of strategy in robot s
j.neucom.2012.03.021
Jan Martinovič received the M.Eng. degree and Ph.D.
degree in computer science from VŠB - Technical
University of Ostrava, Czech Republic, in 2004 and in
2008 respectively. Nowadays, he works as an assistant
professor at the same university. He is a researcher
dealing with data mining and data processing, with
emphasis on web search, data compression and social
networks.
Václav Svatoň received the M.Eng. degree in Computer
Science from VŠB - Technical University of Ostrava,
Czech Republic, in 2010. Currently he continues studying
for Ph.D. degree at the same university. His main area of
interest is data mining and data analysis.
Ajith Abraham received the M.S. degree from
Nanyang Technological University, Singapore, and
the Ph.D. degree in Computer Science from Monash
University, Melbourne, Australia. He has a worldwide
academic experience with formal appointments in
many Universities. He serves/has served the editorial
board of over 50 international journals and has also
guest edited 40 special issues on various topics. He has
published more than 750 publications, and some of the
works have also won best paper awards at interna-
tional conferences. His research and development
experience includes more than 20 years in the industry

and academia. He works in a multidisciplinary envir-

onment involving machine intelligence, network security, various aspects of
networks, e-commerce, Web intelligence, Web services, computational grids, data
mining, and their applications to various real-world problems. He has given more
than 50 plenary lectures and conference tutorials in these areas.
occer game, Neurocomputing (2012), http://dx.doi.org/10.1016/

dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021
dx.doi.org/10.1016/j.neucom.2012.03.021

	Analysis of strategy in robot soccer game
	Introduction
	Related work
	Description of strategy
	Morphology of strategy set
	Loop strategies
	Existence criterion of loop strategies
	Detection of loop strategies

	Ranking of strategies
	Evaluation of strategy
	Generation of offensive strategy
	Conclusions and future work
	Acknowledgment
	References

