
3

Adaptation of Fuzzy Inference System
Using Neural Learning

A. Abraham

Computer Science Department, Oklahoma State University, USA
ajith.abraham@ieee.org, http://ajith.softcomputing.net

The integration of neural networks and fuzzy inference systems could be for-
mulated into three main categories: cooperative, concurrent and integrated
neuro-fuzzy models. We present three different types of cooperative neuro-
fuzzy models namely fuzzy associative memories, fuzzy rule extraction using
self-organizing maps and systems capable of learning fuzzy set parameters.
Different Mamdani and Takagi-Sugeno type integrated neuro-fuzzy systems
are further introduced with a focus on some of the salient features and ad-
vantages of the different types of integrated neuro-fuzzy models that have
been evolved during the last decade. Some discussions and conclusions are
also provided towards the end of the chapter.

3.1 Introduction

Hayashi et al. [21] showed that a feedforward neural network could approxi-
mate any fuzzy rule based system and any feedforward neural network may
be approximated by a rule based fuzzy inference system [31]. Fusion of Ar-
tificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS) have at-
tracted the growing interest of researchers in various scientific and engineer-
ing areas due to the growing need of adaptive intelligent systems to solve
the real world problems [5, 6, 10, 11, 12, 13, 17, 19, 20, 22, 33, 37]. A
neural network learns from scratch by adjusting the interconnections be-
tween layers. Fuzzy inference system is a popular computing framework
based on the concept of fuzzy set theory, fuzzy if-then rules, and fuzzy
reasoning. The advantages of a combination of neural networks and fuzzy
inference systems are obvious [12, 32]. An analysis reveals that the draw-
backs pertaining to these approaches seem complementary and therefore it
is natural to consider building an integrated system combining the con-
cepts [37]. While the learning capability is an advantage from the view-
point of fuzzy inference system, the automatic formation of linguistic rule
base will be advantage from the viewpoint of neural network. There are

A. Abraham: Adaptation of Fuzzy Inference System Using Neural Learning, StudFuzz 181, 53–
83 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

54 A. Abraham

several works related to the integration of neural networks and fuzzy inference
systems [1, 2, 3, 15, 17, 23, 28, 30, 32, 34, 43, 45, 49, 52].

3.2 Cooperative Neuro-Fuzzy Systems

In the simplest way, a cooperative model can be considered as a preproces-
sor wherein artificial neural network (ANN) learning mechanism determines
the fuzzy inference system (FIS) membership functions or fuzzy rules from
the training data. Once the FIS parameters are determined, ANN goes to the
background. Fuzzy Associative Memories (FAM) by Kosko [29], fuzzy rule
extraction using self organizing maps by Pedrycz et al. [46] and the systems
capable of learning of fuzzy set parameters by Nomura et al. [44] are some
good examples of cooperative neuro-fuzzy systems.

3.2.1 Fuzzy Associative Memories

Kosko interprets a fuzzy rule as an association between antecedent and con-
sequent parts [29]. If a fuzzy set is seen as a point in the unit hypercube and
rules are associations, then it is possible to use neural associative memories
to store fuzzy rules. A neural associative memory can be represented by its
connection matrix. Associative recall is equivalent to multiplying a key factor
with this matrix. The weights store the correlations between the features of
the key k and the information part i. Due to the restricted capacity of associa-
tive memories and because of the combination of multiple connection matrices
into a single matrix is not recommended due to severe loss of information, it is
necessary to store each fuzzy rule in a single FAM. Rules with n conjunctively
combined variables in their antecedents can be represented by n FAMs, where
each stores a single rule. The FAMs are completed by aggregating all the in-
dividual outputs (maximum operator in the case of Mamdani fuzzy system)
and a defuzzification component.

Learning could be incorporated in FAM, as learning the weights associ-
ated with FAMs output or to create FAMs completely by learning. A neural
network-learning algorithm determines the rule weights for the fuzzy rules.
Such factors are often interpreted as the influence of a rule and are multiplied
with the rule outputs. Rule weights can be replaced equivalently by modifying
the membership functions. However, this could result in misinterpretation of
fuzzy sets and identical linguistic values might be represented differently in
different rules. Kosko suggests a form of adaptive vector quantization tech-
nique to learn the FAMs. This approach is termed as differential competitive
learning and is very similar to the learning in self-organizing maps.

Figure 3.1 depicts a cooperative neuro-fuzzy model where the neural net-
work learning mechanism is used to determine the fuzzy rules, parameters of
fuzzy sets, rule weights etc. Kosko’s adaptive FAM is a cooperative neuro-
fuzzy model because it uses a learning technique to determine the rules and

3 Adaptation of Fuzzy Inference System Using Neural Learning 55

Neural Network Fuzzy Inference system

Fuzzy sets

Fuzzy rules

Data Output

Fig. 3.1. Cooperative neuro-fuzzy model

its weights. The main disadvantage of FAM is the weighting of rules. Just
because certain rules, does not have much influence does not mean that they
are very unimportant. Hence, the reliability of FAMs for certain applications
is questionable. Due to implementation simplicity, FAMs are used in many
applications.

3.2.2 Fuzzy Rule Extraction Using Self Organizing Maps

Pedryz et al. [46] used self-organizing maps with a planar competition layer to
cluster training data, and they provide means to interpret the learning results.
The learning results could show whether two input vectors are similar to each
other or belong to the same class. However, in the case of high-dimensional
input vectors, the structure of the learning problem can rarely be detected
in the two dimensional map. A procedure is provided for interpreting the
learning results using linguistic variables.

After the learning process, the weight matrix W represents the weight of
each feature of the input patterns to the output. Such a matrix defines a map
for a single feature only. For each feature of the input patterns, fuzzy sets
are specified by a linguistic description B (one fuzzy set for each variable).
They are applied to the weight matrix W to obtain a number of transformed
matrices. Each combination of linguistic terms is a possible description of a
pattern subset or cluster. To check a linguistic description B for validity, the
transformed maps are intersected and a matrix D is obtained. Matrix D deter-
mines the compatibility of the learning result with the linguistic description
B. D(B) is a fuzzy relation, and D(B) is interpreted as the degree of support
of B. By describing D(B) by its α-cuts DB

α one obtains subsets of output
nodes, whose degree of membership is at least α such that the confidence of
all patterns Xα belong to the class described by Bvanishes with decreasing
α. Each B is a valid description of a cluster if D(B) has a non-empty α-cut
DB

α . If the features are separated into input and output features according to

56 A. Abraham

the application considered, then each B represents a linguistic rule, and by
examining each combination of linguistic values, a complete fuzzy rule base
can be created. This method also shows which patterns belong to a fuzzy rule,
because they are not contained in any subset Xα. An important advantage
when compared to FAMs is that the rules are not weighted. The problem is
with the determination of the number of output neurons and the α values for
each learning problem. Compared to FAM, since the form of the membership
function determines a crucial role in the performance the data could be better
exploited. Since Kosko’s learning procedure does not take into account of the
neighborhood relation between the output neurons, perfect topological map-
ping from the input patterns to the output patterns might not be obtained
sometimes. Thus, the FAM learning procedure is more dependent on the se-
quence of the training data than Pedryz et al. procedure. The structure of
the feature space is initially determined and then the linguistic descriptions
best matching the learning results by using the available fuzzy partitions are
obtained. If a large number of patterns fit none of the descriptions, this may
be due to an insufficient choice of membership functions and they can be de-
termined anew. Hence for learning the fuzzy rules this approach is preferable
compared to FAM. Performance of this method still depends on the learning
rate and the neighborhood size for weight modification, which is problem de-
pendant and could be determined heuristically. Fuzzy c-means algorithm also
has been explored to determine the learning rate and neighborhood size by
Bezdek et al. [9].

3.2.3 Systems Capable of Learning Fuzzy Set Parameters

Nomura et al. [44] proposed a supervised learning technique to fine-tune the
fuzzy sets of an existing Sugeno type fuzzy system. The learning algorithm
uses a gradient descent procedure that uses an error measure E (difference
between the actual and target outputs) to fine-tune the parameters of the
membership functions (MF). The procedure is very similar to the delta rule
for multilayer perceptrons. The learning takes place in an offline mode. For
the input vector, the resulting error E is calculated and based on that the
consequent parts (a real value) are updated. Then the same patterns are
propagated again and only the parameters of the MFs are updated. This is
done to take the changes in the consequents into account when the antecedents
are modified. A severe drawback of this approach is that the representation of
the linguistic values of the input variables depends on the rules they appear
in. Initially identical linguistic terms are represented by identical membership
functions. During the learning process, they may be developed differently,
so that identical linguistic terms are represented by different fuzzy sets. The
proposed approach is applicable only to Sugeno type fuzzy inference system.
Using a similar approach, Miyoshi et al. [38] adapted fuzzy T-norm and T-
conorm operators while Yager et al. [53] adapted the defuzzification operator
using a supervised learning algorithm.

3 Adaptation of Fuzzy Inference System Using Neural Learning 57

3.3 Concurrent Neuro-Fuzzy System

In a concurrent model, neural network assists the fuzzy system continuously
(or vice versa) to determine the required parameters especially if the input
variables of the controller cannot be measured directly. Such combinations do
not optimize the fuzzy system but only aids to improve the performance of the
overall system. Learning takes place only in the neural network and the fuzzy
system remains unchanged during this phase. In some cases the fuzzy outputs
might not be directly applicable to the process. In that case neural network
can act as a postprocessor of fuzzy outputs. Figure 3.2 depicts a concurrent
neuro-fuzzy model where in the input data is fed to a neural network and the
output of the neural network is further processed by the fuzzy system.

Neural Network Fuzzy Inference system

Data output

Fig. 3.2. Concurrent neuro-fuzzy model

3.4 Integrated Neuro-Fuzzy Systems

In an integrated model, neural network learning algorithms are used to de-
termine the parameters of fuzzy inference systems. Integrated neuro-fuzzy
systems share data structures and knowledge representations. A fuzzy infer-
ence system can utilize human expertise by storing its essential components
in rule base and database, and perform fuzzy reasoning to infer the overall
output value. The derivation of if-then rules and corresponding membership
functions depends heavily on the a priori knowledge about the system under
consideration. However there is no systematic way to transform experiences of
knowledge of human experts to the knowledge base of a fuzzy inference system.
There is also a need for adaptability or some learning algorithms to produce
outputs within the required error rate. On the other hand, neural network
learning mechanism does not rely on human expertise. Due to the homoge-
nous structure of neural network, it is hard to extract structured knowledge
from either the weights or the configuration of the network. The weights of
the neural network represent the coefficients of the hyper-plane that partition
the input space into two regions with different output values. If we can visu-
alize this hyper-plane structure from the training data then the subsequent

58 A. Abraham

learning procedures in a neural network can be reduced. However, in reality,
the a priori knowledge is usually obtained from human experts, it is most
appropriate to express the knowledge as a set of fuzzy if-then rules, and it is
very difficult to encode into a neural network.

Table 3.1. Comparison between neural networks and fuzzy inference systems

Artificial Neural Network Fuzzy Inference System

Difficult to use prior rule knowledge Prior rule-base can be incorporated
Learning from scratch Cannot learn (linguistic knowledge)
Black box Interpretable (if-then rules)
Complicated learning algorithms Simple interpretation and implementation
Difficult to extract knowledge Knowledge must be available

Table 3.1 summarizes the comparison between neural networks and fuzzy
inference system. To a large extent, the drawbacks pertaining to these two ap-
proaches seem complementary. Therefore, it seems natural to consider building
an integrated system combining the concepts of FIS and ANN modeling. A
common way to apply a learning algorithm to a fuzzy system is to represent it
in a special neural network like architecture. However the conventional neural
network learning algorithms (gradient descent) cannot be applied directly to
such a system as the functions used in the inference process are usually non
differentiable. This problem can be tackled by using differentiable functions in
the inference system or by not using the standard neural learning algorithm.
In Sects. 3.4.1 and 3.4.2, we will discuss how to model integrated neuro-fuzzy
systems implementing Mamdani [36] and Takagi-Sugeno FIS [47].

3.4.1 Mamdani Integrated Neuro-Fuzzy Systems

A Mamdani neuro-fuzzy system uses a supervised learning technique (back-
propagation learning) to learn the parameters of the membership functions.
Architecture of Mamdani neuro-fuzzy system is illustrated in Fig. 3.3. The
detailed function of each layer is as follows:

Layer-1(input layer): No computation is done in this layer. Each node
in this layer, which corresponds to one input variable, only transmits input
values to the next layer directly. The link weight in layer 1 is unity.

Layer-2 (fuzzification layer): Each node in this layer corresponds to one
linguistic label (excellent, good, etc.) to one of the input variables in layer 1. In
other words, the output link represent the membership value, which specifies
the degree to which an input value belongs to a fuzzy set, is calculated in
layer 2. A clustering algorithm will decide the initial number and type of
membership functions to be allocated to each of the input variable. The final
shapes of the MFs will be fine tuned during network learning.

Layer-3 (rule antecedent layer): A node in this layer represents the an-
tecedent part of a rule. Usually a T-norm operator is used in this node. The

3 Adaptation of Fuzzy Inference System Using Neural Learning 59

R1 R2 R3

x1
x2

y

 Layer 2
(fuzzification layer)

 Layer 3
rule antecedent layer

 Layer 4
rule consequent layer

 Layer 5
rule inference and defuzzification layer

 Layer 1
(input layer)

Fig. 3.3. Mamdani neuro-fuzzy system

output of a layer 3 node represents the firing strength of the corresponding
fuzzy rule.

Layer-4 (rule consequent layer): This node basically has two tasks. To
combine the incoming rule antecedents and determine the degree to which they
belong to the output linguistic label (high, medium, low, etc.). The number
of nodes in this layer will be equal to the number of rules.

Layer-5 (combination and defuzzification layer): This node does the com-
bination of all the rules consequents using a T-conorm operator and finally
computes the crisp output after defuzzification.

3.4.2 Takagi-Sugeno Integrated Neuro-Fuzzy System

Takagi-Sugeno neuro-fuzzy systems make use of a mixture of backpropaga-
tion to learn the membership functions and least mean square estimation to
determine the coefficients of the linear combinations in the rule’s conclusions.
A step in the learning procedure got two parts: In the first part the input pat-
terns are propagated, and the optimal conclusion parameters are estimated
by an iterative least mean square procedure, while the antecedent parameters
(membership functions) are assumed to be fixed for the current cycle through
the training set. In the second part the patterns are propagated again, and

60 A. Abraham

in this epoch, backpropagation is used to modify the antecedent parameters,
while the conclusion parameters remain fixed. This procedure is then iterated.
The detailed functioning of each layer (as depicted in 3.4) is as follows:

Layers 1, 2 and 3 functions the same way as Mamdani FIS.
Layer 4 (rule strength normalization): Every node in this layer calculates

the ratio of the i-th rule’s firing strength to the sum of all rules firing strength

wi =
wi

w1 + w2

, i = 1, 2.. (3.1)

Layer-5 (rule consequent layer): Every node i in this layer is with a node
function

wifi = wi (pi x1 + qi x2 + ri) (3.2)

where wi is the output of layer 4, and {pi, qi, ri} is the parameter set.
A well-established way is to determine the consequent parameters using the
least means squares algorithm.

Layer-6 (rule inference layer) The single node in this layer computes the
overall output as the summation of all incoming signals

Overall output =
∑

i

wifi =
∑

i wifi∑
i wi

(3.3)

In the following sections, we briefly discuss the different integrated neuro-
fuzzy models that make use of the complementarities of neural networks and
fuzzy inference systems implementing a Mamdani or Takagi Sugeno fuzzy in-
ference system. Some of the major works in this area are GARIC [8], FALCON
[32], ANFIS [24], NEFCON [40], NEFCLASS [41], NEFPROX [43], FUN [48],
SONFIN [16], FINEST [50], EFuNN [26], dmEFuNN [27], EvoNF [4], and
many others [25, 39, 54].

3.4.3 Adaptive Network Based Fuzzy Inference System (ANFIS)

ANFIS is perhaps the first integrated hybrid neuro-fuzzy model [24] and the
architecture is very similar to Fig. 3.4. A modified version of ANFIS as shown
in Fig. 3.5 is capable of implementing the Tsukamoto fuzzy inference system
[24, 51] as depicted in Fig. 3.6. In the Tsukamoto FIS, the overall output is
the weighted average of each rule’s crisp output induced by the rule’s firing
strength (the product or minimum of the degrees of match with the premise
part) and output membership functions. The output membership functions
used in this scheme must be monotonically non-decreasing. The first hidden
layer is for fuzzification of the input variables and T-norm operators are de-
ployed in the second hidden layer to compute the rule antecedent part. The
third hidden layer normalizes the rule strengths followed by the fourth hidden
layer where the consequent parameters of the rule are determined. Output
layer computes the overall input as the summation of all incoming signals.

3 Adaptation of Fuzzy Inference System Using Neural Learning 61

x1
x2

Layer 2
(fuzzification layer)

R1 R2 R3

x1

y

x2

Layer 4
rule strength normalization

Layer 5
rule consequent layer

Layer 6
rule inference layer

Layer 1
(input layer)

Layer 3
rule antecedent layer

Fig. 3.4. Takagi Sugeno neuro-fuzzy system

Fig. 3.5. Architecture of ANFIS implementing Tsukamoto fuzzy inference system

Fig. 3.6. Tsukamoto fuzzy reasoning

62 A. Abraham

In ANFIS, the adaptation (learning) process is only concerned with pa-
rameter level adaptation within fixed structures. For large-scale problems, it
will be too complicated to determine the optimal premise-consequent struc-
tures, rule numbers etc. The structure of ANFIS ensures that each linguistic
term is represented by only one fuzzy set. However, the learning procedure of
ANFIS does not provide the means to apply constraints that restrict the kind
of modifications applied to the membership functions. When using Gaussian
membership functions, operationally ANFIS can be compared with a radial
basis function network.

3.4.4 Fuzzy Adaptive Learning Control Network (FALCON)

FALCON [32] has a five-layered architecture as shown in Fig. 3.7 and imple-
ments a Mamdani type FIS. There are two linguistic nodes for each output
variable. One is for training data (desired output) and the other is for the
actual output of FALCON. The first hidden layer is responsible for the fuzzi-
fication of each input variable. Each node can be a single node representing
a simple membership function (MF) or composed of multilayer nodes that

R1 R2 R3

x1 xn

R1

y1 y'1 ym y'm

Fig. 3.7. Architecture of FALCON

3 Adaptation of Fuzzy Inference System Using Neural Learning 63

compute a complex MF. The Second hidden layer defines the preconditions
of the rule followed by rule consequents in the third hidden layer. FALCON
uses a hybrid-learning algorithm comprising of unsupervised learning and a
gradient descent learning to optimally adjust the parameters to produce the
desired outputs. The hybrid learning occurs in two different phases. In the ini-
tial phase, the centers and width of the membership functions are determined
by self-organized learning techniques analogous to statistical clustering tech-
niques. Once the initial parameters are determined, it is easy to formulate the
rule antecedents. A competitive learning algorithm is used to determine the
correct rule consequent links of each rule node. After the fuzzy rule base is es-
tablished, the whole network structure is established. The network then enters
the second learning phase to adjust the parameters of the (input and output)
membership functions optimally. The backpropagation algorithm is used for
the supervised learning. Hence FALCON algorithm provides a framework for
structure and parameter adaptation for designing neuro-fuzzy systems [32].

3.4.5 Generalized Approximate Reasoning
Based Intelligent Control (GARIC)

GARIC [8] is an extended version of Berenji’s Approximate Reasoning based
Intelligent Control (ARIC) that implements a fuzzy controller by using several
specialized feedforward neural networks [7]. Like ARIC, it consists of an Action
state Evaluation Network (AEN) and an Action Selection Network (ASN).
The AEN is an adaptive critic that evaluates the actions of the ASN. The
ASN does not use any weighted connections, but the learning process modifies
parameters stored within the units of the network. Architecture of the GARIC-
ASN is depicted in Fig. 3.8. ASN of GARIC is feedforward network with

ξ1

ξ2

R1

R2

R3

R4

η

Fig. 3.8. ASN of GARIC

64 A. Abraham

five layers. The first hidden layer stores the linguistic values of all the input
variables. Each input unit is only connected to those units of the first hidden
layer, which represent its associated linguistic values. The second hidden layer
represents the fuzzy rules nodes, which determine the degree of fulfillment of a
rule using a softmin operation. The third hidden layer represents the linguistic
values of the control output variable η. Conclusions of the rule are computed
depending on the strength of the rule antecedents computed by the rule node
layer. GARIC makes use of local mean-of-maximum method for computing
the rule outputs. This method needs a crisp output value from each rule.
Therefore, the conclusions must be defuzzified before they are accumulated
to the final output value of the controller. The learning algorithm of the AEN
of GARIC is equivalent to that of its predecessor ARIC. However, the ASN
learning procedure is different from the procedure used in ARIC. GARIC
uses a mixture of gradient descent and reinforcement learning to fine-tune the
node parameters. The hybrid learning stops if the output of the AEN ceases
to change. The interpretation of GARIC is improved compared to GARIC.
The relatively complex learning procedure and the architecture of GARIC can
be seen as a main disadvantage of GARIC.

3.4.6 Neuro-Fuzzy Controller (NEFCON)

The learning algorithm defined for NEFCON is able to learn fuzzy sets as well
as fuzzy rules implementing a Mamdani type FIS [40]. This method can be
considered as an extension to GARIC that also use reinforcement learning but
need a previously defined rule base. Figure 3.9 illustrates the basic NEFCON
architecture with 2 inputs and five fuzzy rules [40]. The inner nodes R1, . . . , R5

represent the rules, the nodes ξ1, ξ2, and η the input and output values, and
µr, Vr the fuzzy sets describing the antecedents and consequents. In contrast
to neural networks, the connections in NEFCON are weighted with fuzzy sets
instead of real numbers. Rules with the same antecedent use so-called shared
weights, which are represented by ellipses drawn around the connections as
shown in the figure. They ensure the integrity of the rule base. The knowl-
edge base of the fuzzy system is implicitly given by the network structure.
The input units assume the task of fuzzification interface, the inference logic
is represented by the propagation functions, and the output unit is the defuzzi-
fication interface. The learning process of the NEFCON model can be divided
into two main phases. The first phase is designed to learn the rule base and the
second phase optimizes the rules by shifting or modifying the fuzzy sets of the
rules. Two methods are available for learning the rule base. Incremental rule
learning is used when the correct out put is not known and rules are created
based on estimated output values. As the learning progresses, more rules are
added according to the requirement. For decremental rule learning, initially
rules are created due to fuzzy partitions of process variables and unnecessary
rules are eliminated in the course of learning. Decremental rule learning is
less efficient compared to incremental approach. However it can be applied to

3 Adaptation of Fuzzy Inference System Using Neural Learning 65

R1 R3 R4 R5R2

V1 V2
V3

2
µ(1) (1)

(1) (2)

(2) (2)
1

µ

3
µ

1
µ

2
µ

3
µ

Fuzzification layer

Rule base
 layer

Defuzzification layer

Fig. 3.9. Architecture of NEFCON

unknown processes without difficulty, and there is no need to know or to guess
an optimal output value. Both phases use a fuzzy error E, which describes the
quality of the current system state, to learn or to optimize the rule base. To
obtain a good rule base it must be ensured that the state space of the process
is sufficiently covered during the learning process. Due to the complexity of
the calculations required, the decremental learning rule can only be used, if
there are only a few input variables with not too many fuzzy sets. For larger
systems, the incremental learning rule will be optimal. Prior knowledge when-
ever available could be incorporated to reduce the complexity of the learning.
Membership functions of the rule base are modified according to the Fuzzy
Error Backpropagation (FEBP) algorithm. The FEBP algorithm can adapt
the membership functions, and can be applied only if there is already a rule
base of fuzzy rules. The idea of the learning algorithm is identical: increase the
influence of a rule if its action goes in the right direction (rewarding), and de-
crease its influence if a rule behaves counter productively (punishing). If there
is absolutely no knowledge about initial membership function, a uniform fuzzy
partition of the variables should be used.

3.4.7 Neuro-Fuzzy Classification (NEFCLASS)

NEFCLASS is used to derive fuzzy rules from a set of data that can be sep-
arated in different crisp classes [41]. The rule base of a NEFCLASS system
approximates an unknown function φ that represents the classification prob-
lem and maps an input pattern x to its class Ci:

66 A. Abraham

x1 x2

R1 R3 R4 R5

c1

R2

(1)

(1)

(2)

(2) (2)
2

µ(1)
1

µ

3
µ

1
µ

2
µ

3
µ

Fuzzification layer

Rule
base layer

Defuzzification layer
c2

1 1 11 1

Fig. 3.10. Architecture of NEFCLASS

Because of the propagation procedures used in NEFCLASS the rule base
actually does not approximate φ but a function φ′. We obtain φ (x) from the
equality φ (x) = φ (φ (x)), where φ reflects the interpretation of the classifi-
cation result obtained from a NEFCLASS system [42]. Figure 3.10 illustrates
the NEFCLASS system that maps patterns with two features into two distinct
classes by using five linguistic rules. The NEFCLASS very much resemble the
NEFCON system except the slight variation in the learning algorithm and
the interpretation of the rules. As in NEFCON system, in NEFCLASS iden-
tical linguistic values of an input variable are represented by the same fuzzy
set. As classification is the primary task of NEFCLASS, there should be two
rules with identical antecedents and each rule unit must be connected to only
one output unit. The weights between rule layer and the output layer only
connect the units. A NEFCLASS system can be built from partial knowledge
about the patterns, and can then be refined by learning, or it can be cre-
ated from scratch by learning. A user must define a number of initial fuzzy
sets that partition the domains of the input features, and specify a value for
k, i.e. the maximum number of rule nodes that may be created in the hid-
den layer. NEFCLASS makes use of triangular membership functions and the
learning algorithm of the membership functions uses an error measure that
tells whether the degree of fulfillment of a rule has to be higher or lower.
This information is used to change the input fuzzy sets. Being a classification
system, we are not much interested in the exact output values. In addition,
we take a winner-takes-all interpretation for the output, and we are mainly

3 Adaptation of Fuzzy Inference System Using Neural Learning 67

interested in the correct classification result. The incremental rule learning
in NEFCLASS is much less expensive than decremental rule learning in NE-
FCON. It is possible to build up a rule base in a single sweep through the
training set. Even for higher dimensional problems, the rule base is completed
after at most three cycles. Compared to neural networks, NEFCLASS uses
a much simpler learning strategy. There is no vector quantization involved
in finding the rules (clusters, and there is no gradient information needed to
train the membership functions. Some other advantages are interpretability,
possibility of initialization (incorporating prior knowledge) and its simplicity.

3.4.8 Neuro-Fuzzy Function Approximation (NEFPROX)

NEFPROX system is based on plain supervised learning (fixed learning prob-
lem) and it is used for function approximation [43]. It is a modified ver-
sion of the NEFCON model without the reinforcement learning. NEFPROX
(Fig. 3.11) is very much similar to NEFCON and NEFCLASS except the fact
that NEFCON have only a single output node and NEFCLASS systems do
not use membership functions on the conclusion side. We can initialize the
NEFPROX system if we already know suitable rules or else the system is ca-
pable to incrementally learn all rules. NEFPROX architecture is as shown in
Fig. 11. While ANFIS is capable to implement only Sugeno models with dif-
ferentiable functions, NEFPROX can learn common Mamdani type of fuzzy

x1 x2

R1 R3 R4 R5

y1

R2

2
µ(1) (1)

(1) (2)

(2) (2)
1

µ

3
µ

1
µ

2
µ

3
µ

Fuzzification layer

Rule
base layer

Defuzzification layer
y2

Fig. 3.11. Architecture of NEFPROX

68 A. Abraham

system from data. Further NEFPROX is much faster compared to ANFIS to
yield results.

3.4.9 Fuzzy Inference Environment Software
with Tuning (FINEST)

FINEST is designed to tune the fuzzy inference itself. FINEST is capable
of two kinds of tuning process, the tuning of fuzzy predicates, combination
functions and the tuning of an implication function [50]. The three important
features of the system are:

• The generalized modus ponens is improved in the following four ways
(1) aggregation operators that have synergy and cancellation nature (2) a
parameterized implication function (3) a combination function, which can
reduce fuzziness (4) backward chaining based on generalized modus ponens.

• Aggregation operators with synergy and cancellation nature are defined
using some parameters, indicating the strength of the synergic affect, the
area influenced by the effect, etc., and the tuning mechanism is designed
to tune also these parameters. In the same way, the tuning mechanism can
also tune the implication function and combination function.

• The software environment and the algorithms are designed for carrying out
forward and backward chaining based on the improved generalized modus
ponens and for tuning various parameters of a system.

FINEST make use of a backpropagation algorithm for the fine-tuning of the
parameters. Figure 3.12 shows the layered architecture of FINEST and the
calculation process of the fuzzy inference. The input values (xi) are the facts
and the output value (y) is the conclusion of the fuzzy inference. Layer 1 is a
fuzzification layer and layer 2 aggregates the truth-values of the conditions of
Rule i. Layer 3 deduces the conclusion from Rule I and the combination of
all the rules is done in Layer 4. Referring to Fig. 3.12, the function and i, Ii

and comb respectively represent the function characterizing the aggregation
operator of rule i, the implication function of rule i, and the global combina-
tion function. The functions and i, Ii, comb and membership functions of each
fuzzy predicate are defined with some parameters.

Backpropagation method is used to tune the network parameters. It is
possible to tune any parameter, which appears in the nodes of the network
representing the calculation process of the fuzzy data if the derivative function
with respect to the parameters is given. Thus, FINEST framework provides a
mechanism based on the improved generalized modus ponens for fine tuning
of fuzzy predicates and combination functions and tuning of the implication
function. Parameterization of the inference procedure is very much essential
for proper application of the tuning algorithm.

3 Adaptation of Fuzzy Inference System Using Neural Learning 69

Fig. 3.12. Architecture of FINEST

3.4.10 Self Constructing Neural Fuzzy
Inference Network (SONFIN)

SONFIN implements a Takagi-Sugeno type fuzzy inference system. Fuzzy rules
are created and adapted as online learning proceeds via a simultaneous struc-
ture and parameter identification [16]. In the structure identification of the
precondition part, the input space is partitioned in a flexible way according
to an aligned clustering based algorithm. As to the structure identification of
the consequent part, only a singleton value selected by a clustering method is
assigned to each rule initially. Afterwards, some additional significant terms
(input variables) selected via a projection-based correlation measure for each
rule will be added to the consequent part (forming a linear equation of in-
put variables) incrementally as learning proceeds. For parameter identifica-
tion, the consequent parameters are tuned optimally by either Least Mean
Squares [LMS] or Recursive Least Squares [RLS] algorithms and the pre-
condition parameters are tuned by back propagation algorithm. To enhance
knowledge representation ability of SONFIN, a linear transformation for each
input variable can be incorporated into the network so that much fewer rules
are needed or higher accuracy can be achieved. Proper linear transformations
are also learned dynamically in the parameter identification phase of SONFIN.
Figure 3.13 illustrates the 6-layer structure of SONFIN.

Learning progresses concurrently in two stages for the construction of
SONFIN. The structure learning includes both the precondition and conse-
quent structure identification of a fuzzy if-then rule. The parameter learning
is based on supervised learning algorithms, the parameters of the linear equa-
tions in the consequent parts are adjusted by either LMS or RLS algorithms

70 A. Abraham

Fig. 3.13. Six layered architecture of SONFIN

and the parameters in the precondition part are adjusted by the backpropaga-
tion algorithm. SONFIN can be used for normal operation at anytime during
the learning process without repeated training on the input-output pattern
when online operation is required. In SONFIN rule base is dynamically created
as the learning progresses by performing the following learning processes:

• Input-output space partitioning

The way the input space is partitioned determines the number of rules ex-
tracted from the training data as well as the number of fuzzy sets on the
universal of discourse of each input variable. For each incoming pattern x
the strength a rule is fired can be interpreted as the degree the incoming
pattern belongs to the corresponding cluster. The center and width of the
corresponding membership functions (of the newly formed fuzzy rules) are
assigned according to the first-neighbor heuristic. For each rule generated,
the next step is to decompose the multidimensional membership function to
corresponding 1 − D membership function for each input variable. For the
output space partitioning, almost a similar measure is adopted. Performance
of SONFIN can be enhanced by incorporating a transformation matrix R into
the structure, which accommodates all the a priori knowledge of the data set.

• Construction of fuzzy rule base

Generation of new input cluster corresponds to the generation of a new fuzzy
rule, with its precondition part constructed by the learning algorithm in

3 Adaptation of Fuzzy Inference System Using Neural Learning 71

process. At the same time we have to decide the consequent part of the gen-
erated rule. This is done using a algorithm based on the fact that different
preconditions of rules may be mapped to the same consequent fuzzy set. Since
only the center of each output membership function is used for defuzzifica-
tion, the consequent part of each rule may simply be regarded as a singleton.
Compared to the general fuzzy rule based models with singleton output where
each rule has its own singleton value, fewer parameters are needed in the con-
sequent part of the SONFIN, especially for complicated systems with a large
number of rules.

• Optimal consequent structure identification

TSK model can model a sophisticated system with a few rules. In SONFIN, in-
stead of using the linear combination of all input variables as the consequent
part, only the most significant input variables are used as the consequent
terms of the SONFIN. The significant terms will be chosen and added to the
network incrementally any time when the parameter learning cannot improve
the network output accuracy anymore during the online learning process. The
consequent structure identification scheme in SONFIN is a kind of node grow-
ing method in ANNs. When the effect of the parameter learning diminished
(output error is not decreasing), additional terms are added to the consequent
part.

• Parameter identification

After the network structure is adjusted according to the current training pat-
tern, the network then enters the parameter identification phase to adjust the
parameters of the network optimally based on the same training pattern. Pa-
rameter learning is performed on the whole network after structure learning,
no matter whether the nodes (links) are newly added or are existent originally.
Backpropagation algorithm is used for this supervised learning. SONFIN is
perhaps one of the most computational expensive among all neuro-fuzzy mod-
els. The network is adaptable to the users specification of required accuracy.

3.4.11 Fuzzy Net (FUN)

In FUN in order to enable an unequivocal translation of fuzzy rules and mem-
bership functions into the network, special neurons have been defined, which,
through their activation functions, can evaluate logic expressions [48]. The net-
work consists of an input, an output and three hidden layers. The neurons of
each layer have different activation functions representing the different stages
in the calculation of fuzzy inference. The activation function can be individ-
ually chosen for problems. The network is initialized with a fuzzy rule base
and the corresponding membership functions. Figure 14 illustrates the FUN
network. The input variables are stored in the input neurons. The neurons in
the first hidden layer contain the membership functions and this performs a

72 A. Abraham

Steering

 Left Forward Right

 Rule 1 Rule 2

Defuzzification

OR

AND

 Left Far Near Right Forward

 Goal Sensor

Fuzzification

Input

Fig. 3.14. Architecture of the FUN showing the implementation of a sample rule

fuzzification of the input values. In the second hidden layer, the conjunctions
(fuzzy-AND) are calculated. Membership functions of the output variables
are stored in the third hidden layer. Their activation function is a fuzzy-OR.
Finally, the output neurons contain the output variables and have a defuzzi-
fication activation function. FUN network is depicted in Fig. 3.14.

Rule: IF (Goal IS forward AND Sensor IS near) OR (goal IS right AND
sensor IS far) THEN steering = forward

The rules and the membership functions are used to construct an initial
FUN network. The rule base can then be optimized by changing the struc-
ture of the net or the data in the neurons. To learn the rules, the connections
between the rules and the fuzzy values are changed. To learn the member-
ship functions, the data of the nodes in the first and three hidden layers
are changed. FUN can be trained with the standard neural network training
strategies such as reinforcement or supervised learning.

3 Adaptation of Fuzzy Inference System Using Neural Learning 73

• Learning of the rules and membership functions

The rules are represented in the net through the connections between the
layers. The learning of the rules is implemented as a stochastic search in the
rule space: a randomly chosen connection is changed and the new network
performance is verified with a cost function. If the performance is worse, the
change is undone, otherwise it is kept and some other changes are tested, until
the desired output is achieved. As the learning algorithm should preserve the
semantic of the rules, it has to be controlled in such a way that no two values
of the same variable appear in the same rule. This is achieved by swapping
connections between the values of the same variable. FUN uses a mixture
of gradient descent and stochastic search for updating the membership func-
tions. A maximum change in a random direction is initially assigned to all
Membership function Descriptors (MFDs). In a random fashion one MFD
of one linguistic variable is selected, and the network performance is tested
with this MFD altered according to the allowable change for this MFD. If
the network performs better according to the given cost function, the new
value is accepted and next time another change is tried in the same direction.
Contrary if the network performs worse, the change is reversed. To guaran-
tee convergence, the changes are reduced after each training step and shrink
asymptotically towards zero according to the learning rate. As evident, FUN
system is initialized by specifying a fixed number of rules and a fixed number
of initial fuzzy sets for each variable and the network learns through a sto-
chastic procedure that randomly changes parameters of membership functions
and connections within the network structure Since no formal neural network
learning technique is used it is questionable to call FUN a neuro-fuzzy system.

3.4.12 Evolving Fuzzy Neural Networks (EFuNN)

EFuNNs [26] and dmEFuNNs [27] are based on the ECOS (Evolving COnnec-
tionist Systems) framework for adaptive intelligent systems formed because of
evolution and incremental, hybrid (supervised/unsupervised), online learning.
They can accommodate new input data, including new features, new classes,
and etc. through local element tuning.

In EFuNNs all nodes are created during learning. EFuNN has a five-layer
architecture as shown in Fig. 3.15. The input layer is a buffer layer representing
the input variables. The second layer of nodes represents fuzzy quantification
of each input variable space. Each input variable is represented here by a group
of spatially arranged neurons to represent a fuzzy quantization of this variable.
The nodes representing membership functions (triangular, Gaussian, etc) can
be modified during learning. The third layer contains rule nodes that evolve
through hybrid supervised/unsupervised learning. The rule nodes represent
prototypes of input-output data associations, graphically represented as an
association of hyper-spheres from the fuzzy input and fuzzy output spaces.
Each rule node ris defined by two vectors of connection weights: W1(r) and

74 A. Abraham

Fig. 3.15. Architecture of EFuNN

W2(r), the latter being adjusted through supervised learning based on the
output error, and the former being adjusted through unsupervised learning
based on similarity measure within a local area of the input problem space.
The fourth layer of neurons represents fuzzy quantification for the output
variables. The fifth layer represents the real values for the output variables.
In the case of “one-of-n” EFuNNs, the maximum activation of the rule node
is propagated to the next level. In the case of “many-of-n” mode, all the
activation values of rule nodes that are above an activation threshold are
propagated further in the connectionist structure.

3.4.13 Dynamic Evolving Fuzzy Neural Networks (dmEFuNNs)

Dynamic Evolving Fuzzy Neural Networks (dmEFuNN) model is developed
with the idea that not just the winning rule node’s activation is propagated
but a group of rule nodes is dynamically selected for every new input vector
and their activation values are used to calculate the dynamical parameters of
the output function. While EFuNN make use of the weighted fuzzy rules of
Mamdani type, dmEFuNN uses the Takagi-Sugeno fuzzy rules. The architec-
ture is depicted in Fig. 3.16.

The first, second and third layers of dmEFuNN have exactly the same
structures and functions as the EFuNN. The fourth layer, the fuzzy inference
layer, selects m rule nodes from the third layer which have the closest fuzzy
normalised local distance to the fuzzy input vector, and then, a TakagiSugeno

3 Adaptation of Fuzzy Inference System Using Neural Learning 75

Fig. 3.16. Architecture of dmEFuNN

fuzzy rule will be formed using the weighted least square estimator. The last
layer calculates the output of dmEFuNN.

The number m of activated nodes used to calculate the output values for
a dmEFuNN is not less than the number of the input nodes plus one. Like
the EFuNNs, the dmEFuNNs can be used for both offline learning and online
learning thus optimising global generalization error, or a local generalization
error. In dmEFuNNs, for a new input vector (for which the output vector is
not known), a subspace consisted of m rule nodes are found and a first order
TakagiSugeno fuzzy rule is formed using the least square estimator method.
This rule is used to calculate the dmEFuNN output value. In this way, a dmE-
FuNN acts as a universal function approximator using m linear functions in a
small m dimensional node subspace. The accuracy of approximation depends
on the size of the node subspaces, the smaller the subspace is, the higher
the accuracy. It means that if there are sufficient training data vectors and
sufficient rule nodes are created, a satisfying accuracy can be obtained.

3.5 Discussions

As evident, both cooperative and concurrent models are not fully interpretable
due to the presence of neural network (black box concept). Whereas an in-
tegrated neuro-fuzzy model is interpretable and capable of learning in a su-
pervised mode (or even reinforcement learning like NEFCON). In FALCON,

76 A. Abraham

GARIC, ANFIS, NEFCON, SONFIN, FINEST and FUN the learning process
is only concerned with parameter level adaptation within fixed structures.
For large-scale problems, it will be too complicated to determine the opti-
mal premise-consequent structures, rule numbers etc. User has to provide the
architecture details (type and quantity of MF’s for input and output vari-
ables), type of fuzzy operators etc. FINEST provides a mechanism based on
the improved generalized modus ponens for fine tuning of fuzzy predicates and
combination functions and tuning of an implication function. An important
feature of EFuNN and dmEFuNN is the one pass (epoch) training, which is
highly capable of online learning. Table 3.2 provides a comparative perfor-
mance of some neuro fuzzy systems for predicting the Mackey-Glass chaotic
time series [35]. Due to unavailability of source codes, we are unable to provide
a comparison with all the models. Training was done using 500 data sets and
the considered NF models were tested with another 500 data sets [1].

Table 3.2. Performance of neuro-fuzzy systems

System Epochs Test RMSE

ANFIS 75 0.0017
NEFPROX 216 0.0332
EFuNN 1 0.0140
dmEFuNN 1 0.0042
SONFIN 1 0.0180

Among NF models ANFIS has the lowest Root Mean Square Error
(RMSE) and NEPROX the highest. This is probably due to Takagi-Sugeno
rules implementation in ANFIS compared to the Mamdani-type fuzzy system
in NEFPROX. However, NEFPROX outperformed ANFIS in terms of compu-
tational time. Due to fewer numbers of rules SONFIN, EFuNN and dmEFuNN
are also able to perform faster than ANFIS. Hence, there is a tradeoff between
interpretability and accuracy. Takagi Sugeno type inference systems are more
accurate but require more computational effort. While Mamdani type infer-
ence, systems are more interpretable and required less computational load but
often with a compromise on accuracy.

As the problem become, more complicated manual definition of NF ar-
chitecture/parameters becomes complicated. The following questions remain
unanswered:

• For input/output variables, what are the optimal number of membership
functions and shape?

• What is the optimal structure (rule base) and fuzzy operators?
• What are the optimal learning parameters?
• Which fuzzy inference system (example. Takagi-Sugeno, Mamdani etc.) will

work the best for a given problem?

3 Adaptation of Fuzzy Inference System Using Neural Learning 77

3.5.1 Evolutionary and Neural Learning
of Fuzzy Inference System (EvoNF)

In an integrated neuro-fuzzy model there is no guarantee that the neural net-
work learning algorithm converges and the tuning of fuzzy inference system
will be successful. Natural intelligence is a product of evolution. Therefore, by
mimicking biological evolution, we could also simulate high-level intelligence.
Evolutionary computation works by simulating a population of individuals,
evaluating their performance, and evolving the population a number of times
until the required solution is obtained. The drawbacks pertaining to neural
networks and fuzzy inference systems seem complementary and evolutionary
computation could be used to optimize the integration to produce the best
possible synergetic behavior to form a single system. Adaptation of fuzzy in-
ference systems using evolutionary computation techniques has been widely
explored [14]. EvoNF [4] is an adaptive framework based on evolutionary com-
putation and neural learning wherein the membership functions, rule base
and fuzzy operators are adapted according to the problem. The evolutionary
search of MFs, rule base, fuzzy operators etc. would progress on different time
scales to adapt the fuzzy inference system according to the problem environ-
ment. Membership functions and fuzzy operators would be further fine-tuned
using a neural learning technique. Optimal neural learning parameters will
be decided during the evolutionary search process. Figure 3.17 illustrates the
general interaction mechanism of the EvoNF framework with the evolutionary
search of fuzzy inference system (Mamdani, Takagi -Sugeno etc.) evolving at
the highest level on the slowest time scale. For each evolutionary search of
fuzzy operators (best combination of T-norm and T-conorm, defuzzification
strategy etc), the search for the fuzzy rule base progresses at a faster time scale
in an environment decided by the problem. In a similar manner, evolutionary
search of membership functions proceeds at a faster time scale (for every rule
base) in the environment decided by the problem. Hierarchy of the different
adaptation procedures will rely on the prior knowledge. For example, if there

Search of fuzzy inference system
Slow

Fast

Time scale

Search of fuzzy operators

Search of fuzzy rules (knowledge base)

Search of membership functions

Fig. 3.17. Interaction of evolutionary search mechanisms in the adaptation of fuzzy
inference system

78 A. Abraham

FIS1 FIS2 FIS3 FIS4 FIS5 FIS6 FIS7

OP1 OP2 OP3 OP4 OP6OP5

Rule1 Rule2 Rule3 Rule4 Rule5

Fuzzy inference system

Fuzzy operators

Fuzzy rules

MF1 MF2 MF3 MF4

Fuzzy membership functions

Fig. 3.18. Chromosome representation of the adaptive fuzzy inference system using
evolutionary computation and neural learning

is more prior knowledge about the fuzzy rule base than the fuzzy operators
then it is better to implement the search for fuzzy rule base at a higher level.
The problem representation (genetic coding) is illustrated in Fig. 3.18. Please
refer [4] for more technical details.

Automatic adaptation of membership functions is popularly known as self
tuning and the genome encodes parameters of trapezoidal, triangle, logistic,
hyperbolic-tangent, Gaussian membership functions etc.

Evolutionary search of fuzzy rules can be carried out using three ap-
proaches. In the first method, (Michigan approach) the fuzzy knowledge base
is adapted because of antagonistic roles of competition and cooperation of
fuzzy rules [14]. Each genotype represents a single fuzzy rule and the entire
population represents a solution. A classifier rule triggers whenever its condi-
tion part matches the current input, in which case the proposed action is sent
to the process to be controlled. The global search algorithm will generate new
classifier rules based on the rule strengths acquired during the entire process.
The fuzzy behavior is created by an activation sequence of mutually collabo-
rating fuzzy rules. The entire knowledge base is build up by a cooperation of
competing multiple fuzzy rules.

The second method (Pittsburgh approach) evolves a population of knowl-
edge bases rather than individual fuzzy rules [14]. Genetic operators serve to
provide a new combination of rules and new rules. In some cases, variable
length rule bases are used; employing modified genetic operators for dealing
with these variable length and position independent genomes. The disadvan-
tage is the increased complexity of search space and additional computational
burden especially for online learning.

3 Adaptation of Fuzzy Inference System Using Neural Learning 79

The third method (iterative rule learning approach) is very much similar
to the first method with each chromosome representing a single rule, but
contrary to the Michigan approach, only the best individual is considered
to form part of the solution, discarding the remaining chromosomes in the
population. The evolutionary learning process builds up the complete rule
base through a iterative learning process [18].

3.6 Conclusions

In this chapter, we presented the different ways to learn fuzzy inference sys-
tems using neural network learning techniques. As a guideline, for neuro-
fuzzy systems to be highly intelligent some of the major requirements are fast
learning (memory based - efficient storage and retrieval capacities), on-line
adaptability (accommodating new features like inputs, outputs, nodes, con-
nections etc), achieve a global error rate and computationally inexpensive.
The data acquisition and preprocessing training data is also quite impor-
tant for the success of neuro-fuzzy systems. Many neuro-fuzzy models use
supervised/unsupervised techniques to learn the different parameters of the
inference system. The success of the learning process is not guaranteed, as the
designed model might not be optimal. Empirical research has shown that gra-
dient descent technique (most commonly used supervised learning algorithm)
is trapped in local optima especially when the error surface is complicated.

Global optimization procedures like evolutionary algorithms, simulated
annealing, tabu search etc. might be useful for adaptive evolution of fuzzy
if-then rules, shape and quantity of membership functions, fuzzy operators
and other node functions, to prevent the network parameters being trapped in
local optima due to reliance on gradient information by most of the supervised
learning techniques. For online learning, global optimization procedures might
sound computational expensive. Fortunately, evolutionary algorithms work
with a population of independent solutions, which makes it easy to distribute
the computational load among several processors using parallel algorithms.

Sugeno-type fuzzy systems are high performers (less RMSE) but often
requires complicated learning procedures and computational expensive. How-
ever, Mamdani-type fuzzy systems can be modeled using faster heuristics but
with a compromise on the performance (accuracy). Hence there is always a
compromise between performance and computational time.

3.7 Acknowledgements

The author wishes to thank the anonymous reviewers for their constructive
comments which helped to improve the presentation of the chapter.

80 A. Abraham

References

1. A. Abraham, Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques,
Connectionist Models of Neurons, Learning Processes, and Artificial Intelli-
gence, Springer-Verlag Germany, Jose Mira and Alberto Prieto (Eds.), Granada,
Spain, pp. 269–276, 2001. 54, 76

2. A. Abraham, Intelligent Systems: Architectures and Perspectives, Recent Ad-
vances in Intelligent Paradigms and Applications, Abraham A., Jain L. and
Kacprzyk J. (Eds.), Studies in Fuzziness and Soft Computing, Springer Verlag
Germany, Chap. 1, pp. 1–35, 2002. 54

3. A. Abraham and M.R. Khan, Neuro-Fuzzy Paradigms for Intelligent Energy
Management, Innovations in Intelligent Systems: Design, Management and Ap-
plications, Abraham A., Jain L. and Jan van der Zwaag B. (Eds.), Studies in
Fuzziness and Soft Computing, Springer Verlag Germany, Chap. 12, pp. 285–
314, 2003. 54

4. A. Abraham, EvoNF: A Framework for Optimization of Fuzzy Inference Systems
Using Neural Network Learning and Evolutionary Computation, The 17th IEEE
International Symposium on Intelligent Control, ISIC’02, IEEE Press, pp. 327–
332, 2002. 60, 77, 78

5. P. Andlinger and E.R. Reichl, Fuzzy-Neunet: A Non Standard Neural Network,
In Prieto et al., pp. 173–180, 1991. 53

6. M. Arao, T. Fukuda and K. Shimokima, Flexible Intelligent System based on
Fuzzy Neural Networks and Reinforcement Learning, In proceedings of IEEE
International Conference on Fuzzy Systems, Vol 5(1), pp. 69–70, 1995. 53

7. H.R. Berenji and P. Khedkar, Fuzzy Rules for Guiding Reinforcement Learning,
In International. Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU’92), pp. 511–514, 1992. 63

8. H.R. Berenji and P. Khedkar, Learning and Tuning Fuzzy Logic Controllers
through Reinforcements, IEEE Transactions on Neural Networks, Vol (3),
pp. 724–740, 1992. 60, 63

9. J.C. Bezdek and S.K. Pal, Fuzzy Models for Pattern Recognition, IEEE Press,
New York, 1992. 56

10. M. Brown, K. Bossley and D. Mills, High Dimensional Neurofuzzy Systems:
Overcoming the Course of Dimensionality, In Proceedings. IEEE International.
Conference on Fuzzy Systems, pp. 2139–2146, 1995. 53

11. J.J. Buckley and Y. Hayashi, Hybrid neural nets can be fuzzy controllers and
fuzzy expert systems, Fuzzy Sets and Systems, 60: pp. 135–142, 1993. 53

12. H. Bunke and A. Kandel, Neuro-Fuzzy Pattern Recognition, World Scientific
Publishing CO, Singapore, 2000. 53

13. G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and D.B. Rosen,
Fuzzy ARTMAP: A Neural Network Architecture for Incremental Supervised
Learning of Analog Multidimensional Maps, IEEE Transactions Neural Net-
works, 3(5), pp. 698–712, 1992. 53

14. O. Cordón F. Herrera, F. Hoffmann and L. Magdalena, Genetic Fuzzy Systems:
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, World Scientific
Publishing Company, Singapore, 2001. 77, 78

15. F. De Souza, M.M.R. Vellasco, M.A.C. Pacheco, The Hierarchical Neuro-Fuzzy
BSP Model: An Application in Electric Load Forecasting, Connectionist Mod-
els of Neurons, Learning Processes and Artificial Intelligence, Jose Mira et al
(Editors), LNCS 2084, Springer Verlag Germany, 2001. 54

3 Adaptation of Fuzzy Inference System Using Neural Learning 81

16. J.C. Feng and L.C. Teng, An Online Self Constructing Neural Fuzzy Inference
Network and its Applications, IEEE Transactions on Fuzzy Systems, Vol 6,
No.1, pp. 12–32, 1998. 60, 69

17. R. Fuller, Introduction to Neuro-Fuzzy Systems, Studies in Fuzziness and Soft
Computing, Springer Verlag, Germany, 2000. 53, 54

18. A. Gonzalez and F. Herrera, Multi-Stage Genetic Fuzzy Systems Based on
the Iterative Rule Learning Approach, Mathware and Soft Computing Vol 4,
pp. 233–249, 1997. 79

19. M.M. Gupta, Fuzzy Neural Computing Systems, In Proceedings of SPIE,
Vol 1710, Science of Artificial Neural Networks, Vol 2, pp. 489–499, 1992. 53

20. S.K. Halgamuge and M. Glesner, Neural Networks in Designing Fuzzy Systems
for Real World Applications, Fuzzy Sets and Systems, 65: pp. 1–12, 1994. 53

21. Y. Hayashi and J.J. Buckley, Approximations Between Fuzzy Expert Systems
and Neural Networks, International Journal of Approximate Reasoning, Vol 10,
pp. 63–73, 1994. 53

22. Y. Hayashi and A. Imura, Fuzzy Neural Expert System with Automated Ex-
traction of Fuzzy If-Then Rules from a Trained Neural Network, In First In-
ternational. Symposium on Uncertainty Modeling and Analysis, pp. 489–494,
1990. 53

23. J. Hollatz, Neuro-Fuzzy in Legal Reasoning, In Proceedings. IEEE International.
Conference on Fuzzy Systems, pp. 655–662, 1995. 54

24. R. Jang, Neuro-Fuzzy Modeling: Architectures, Analyses and Applications,
Ph.D. Thesis, University of California, Berkeley, 1992. 60

25. A. Kandel, Q.Y. Zhang and H. Bunke, A Genetic Fuzzy Neural Network for
Pattern Recognition, In IEEE Transactions on Fuzzy Systems, pp. 75–78, 1997. 60

26. N. Kasabov, Evolving Fuzzy Neural Networks – Algorithms, Applications and
Biological Motivation, In Yamakawa T and Matsumoto G (Eds), Methodologies
for the Conception, Design and Application of Soft Computing, World Scientific,
pp. 271–274, 1998. 60, 73

27. N. Kasabov and S. Qun, Dynamic Evolving Fuzzy Neural Networks with
m-out-of-n Activation Nodes for On-line Adaptive Systems, Technical Re-
port TR99/04, Department of information science, University of Otago, New
Zealand, 1999. 60, 73

28. E. Khan and P. Venkatapuram, Neufuz: Neural Network Based Fuzzy Logic
Design Algorithms, In Proceedings IEEE International Conference on Fuzzy
Systems, pp. 647–654, 1993. 54

29. B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach
to Machine Intelligence, Prentice Hall, Englewood Cliffs, New Jersey, 1992. 54

30. W. Li, Optimization of a Fuzzy Controller Using Neural Network, In Proceedings
IEEE International Conference on Fuzzy Systems, pp. 223–227, 1994. 54

31. X.H. Li and C.L.P. Chen, The Equivalance Between Fuzzy Logic Systems and
Feedforward Neural Networks, IEEE Transactions on Neural Networks, Vol 11,
No. 2, pp. 356–365, 2000. 53

32. C.T. Lin and C.S.G. Lee, Neural Network based Fuzzy Logic Control and
Decision System, IEEE Transactions on Comput. (40(12): pp. 1320–1336,
1991. 53, 54, 60, 62, 63

33. C.T. Lin and C.S.G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to
Intelligent Systems, Prentice Hall Inc, USA, 1996. 53

82 A. Abraham

34. A. Lotfi, Learning Fuzzy Inference Systems, Ph.D. Thesis, Department of
Electrical and Computer Engineering, University of Queensland, Australia,
1995. 54

35. M.C. Mackey and L. Glass, Oscillation and Chaos in Physiological Control Sys-
tems, Science Vol 197, pp. 287–289, 1977. 76

36. E.H. Mamdani and S. Assilian, An Experiment in Linguistic Synthesis with a
Fuzzy Logic Controller, International Journal of Man-Machine Studies, Vol 7,
No.1, pp. 1–13, 1975. 58

37. S. Mitra and Y. Hayashi, Neuro-Fuzzy Rule Generation: Survey in Soft Comput-
ing Framework’, IEEE Transactions on Neural Networks, Vol II, No. 3. pp. 748–
768, 2000. 53

38. T. Miyoshi, S. Tano, Y. Kato and T. Arnould, Operator Tuning in Fuzzy Pro-
duction Rules Using Neural networks, In Proceedings of the IEEE International
Conference on Fuzzy Systems, San Francisco, pp. 641–646, 1993. 56

39. M. Mizumoto and S. Yan, A New Approach of Neurofuzzy Learning Algorithm,
Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algo-
rithms, Ruan D (Ed.), Kluwer Academic Publishers, pp. 109–129, 1997. 60

40. D. Nauck and R. Kruse, NEFCON-I: An X-Window Based Simulator for Neural
Fuzzy Controllers. In Proceedings of the IEEE International Conference on
Neural Networks, Orlando, pp. 1638–1643, 1994. 60, 64

41. D. Nauck and R. Kruse, NEFCLASS: A Neuro-Fuzzy Approach for the Clas-
sification of Data, In Proceedings of ACM Symposium on Applied Computing,
George K et al (Eds.), Nashville, ACM Press, pp. 461–465, 1995. 60, 65

42. D. Nauck and R. Kruse, A Neuro-Fuzzy Method to Learn Fuzzy Classification
Rules from Data. Fuzzy Sets and Systems, 89, pp. 277–288, 1997. 66

43. D. Nauck D. and R. Kruse, Neuro-Fuzzy Systems for Function Approximation,
Fuzzy Sets and Systems, 101, pp. 261–271, 1999. 54, 60, 67

44. H. Nomura, I. Hayashi and N. Wakami, A Learning Method of Fuzzy Inference
Systems by Descent Method, In Proceedings of the First IEEE International
conference on Fuzzy Systems, San Diego, USA, pp. 203–210, 1992. 54, 56

45. S.K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition: Methods in Soft Com-
puting, John Wiley & Sons, Inc, USA, 1999. 54

46. W. Pedrycz and H.C. Card, Linguistic Interpretation of Self Organizing Maps,
In Prroceedings of the IEEE International Conference on Fuzzy Systems, San
Diego, pp. 371–378, 1992. 54, 55

47. M. Sugeno, Industrial Applications of Fuzzy Control, Elsevier Science Pub Co.,
1985. 58

48. S.M. Sulzberger, N.N. Tschicholg-Gurman, S.J. Vestli, FUN: Optimization of
Fuzzy Rule Based Systems Using Neural Networks, In Proceedings of IEEE
Conference on Neural Networks, San Francisco, pp. 312–316, 1993. 60, 71

49. H. Takagi, Fusion Technology of Fuzzy Theory and Neural Networks - Survey
and Future Directions, In Proceedings 1st International Conference on Fuzzy
Logic & Neural Networks, pp. 13–26, 1990. 54

50. S. Tano, T. Oyama and T. Arnould, Deep combination of Fuzzy Inference and
Neural Network in Fuzzy Inference, Fuzzy Sets and Systems, 82(2) pp. 151–160,
1996. 60, 68

51. Y. Tsukamoto, An Approach to Fuzzy Reasoning Method, Gupta M.M. et al
(Eds.), Advances in Fuzzy Set Theory and Applications, pp. 137–149, 1979. 60

52. R.R. Yager, On the Interface of Fuzzy Sets and Neural Networks, In Interna-
tional Workshop on Fuzzy System Applications, pp. 215–216, 1988. 54

3 Adaptation of Fuzzy Inference System Using Neural Learning 83

53. R.R. Yager and D.P. Filev, Adaptive Defuzzification for Fuzzy System Model-
ing, In Proceedings of the Workshop of the North American Fuzzy Information
Processing Society, pp. 135–142, 1992. 56

54. Q.Y. Zhang and A. Kandel, Compensatory Neuro-fuzzy Systems with Fast
Learning Algorithms, IEEE Transactions on Neural Networks, Vol 9, No. 1,
pp. 83–105, 1998. 60

	3 Adaptation of Fuzzy Inference System Using Neural Learning
	A. Abraham
	3.1 Introduction
	3.2 Cooperative Neuro-Fuzzy Systems
	3.2.1 Fuzzy Associative Memories
	3.2.2 Fuzzy Rule Extraction Using Self Organizing Maps
	3.2.3 Systems Capable of Learning Fuzzy Set Parameters

	3.3 Concurrent Neuro-Fuzzy System
	3.4 Integrated Neuro-Fuzzy Systems
	3.4.1 Mamdani Integrated Neuro-Fuzzy Systems
	3.4.2 Takagi-Sugeno Integrated Neuro-Fuzzy System
	3.4.3 Adaptive Network Based Fuzzy Inference System (ANFIS)
	3.4.4 Fuzzy Adaptive Learning Control Network (FALCON)
	3.4.5 Generalized Approximate Reasoning Based Intelligent Control (GARIC)
	3.4.6 Neuro-Fuzzy Controller (NEFCON)
	3.4.7 Neuro-Fuzzy Classification (NEFCLASS)
	3.4.8 Neuro-Fuzzy Function Approximation (NEFPROX)
	3.4.9 Fuzzy Inference Environment Software with Tuning (FINEST)
	3.4.10 Self Constructing Neural Fuzzy Inference Network (SONFIN)
	3.4.11 Fuzzy Net (FUN)
	3.4.12 Evolving Fuzzy Neural Networks (EFuNN)
	3.4.13 Dynamic Evolving Fuzzy Neural Networks (dmEFuNNs)

	3.5 Discussions
	3.5.1 Evolutionary and Neural Learning of Fuzzy Inference System (EvoNF)

	3.6 Conclusions
	3.7 Acknowledgements
	References

