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Summary. The demand for Internet content rose dramatically in recent years.
Servers became more and more powerful and the bandwidth of end user connections
and backbones grew constantly during the last decade. Nevertheless users often
experience poor performance when they access web sites or download files. Reasons
for such problems are often performance problems, which occur directly on the
servers (e.g. poor performance of server-side applications or during flash crowds) and
problems concerning the network infrastructure (e.g. long geographical distances,
network overloads, etc.). Web caching and prefetching have been recognized as the
effective schemes to alleviate the service bottleneck and to minimize the user access
latency and reduce the network traffic. In this chapter, we model the uncertainty
in Web caching using the granularity of rough set (RS) and inductive learning. The
proposed framework is illustrated using the trace-based experiments from Boston
University Web trace data set.

1 Introduction

Good interactive response-time has long been known to be essential for user
satisfaction and productivity [1, 2, 3]. This is also true for the Web [4, 5]. A
widely-cited study from Zona Research [6] provides an evidence for the “eight
second rule” in electronic commerce, “f a Web site takes more than eight
seconds to load, the user is much more likely to become frustrated and leave
the site”.

Lu et al.[7] has mentioned that most business organizations and govern-
ment departments nowadays have developed and provided Internet based elec-
tronic services (e-services) that feature various intelligent functions. This form
of e-services is commonly called e-service intelligence (ESI). ESI integrates
intelligent technologies and methodologies into e-service systems for realizing
intelligent Internet information searching, presentation, provision, recommen-
dation, online system design, implementation, and assessment for Internet
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users. These intelligent technologies include machine learning, soft computing,
intelligent languages, and data mining etc. ESI has been recently identified
as a new direction for the future development stage of e-services. E-services
offer great opportunities and challenges for many areas of services, such as
government, education, tourism, commerce, marketing, finance, and logistics.
They involve various online service providers, delivery systems and applica-
tions including e-government, e-learning, e-shopping, e-marketing, e-banking,
and e-logistics.

A surprising fact is that many people tend to access the same piece of
information repeatedly [7, 8] in any ESI. This could be weather related data,
news, stock quotes, baseball scores, course notes, technical papers, exchange
rate information and so on. If too many people attempt to access a Web
site simultaneously, then they may experience problems in getting connected
to the Web site. This is due to slow responses from the server as well as
incapability of Web site in coping with the load.

An alternative way to tackle these problems is an implementation of Web
caching in enhancing Web access [9, 8]. Web caching is beneficial to broad
users including those who are relied on slow dial-up links as well as on faster
broadband connections. The word caching refers to the process of saving data
for future use. In other words, Web caching is the process of saving copies of
content from the Web closer to the end user for quicker access. Web caching
is a fairly new technology whose history is linked to that of the Web [10].

At the same time, Web prefetching is another well-known technique for
reducing user web latency by preloading the web object that is not requested
yet by the user [8, 9, 11, 12]. In other words, prefetching is a technique that
downloads the probabilistic pages that are not requested by the user but could
be requested again by the same user. Conventionally, there is some elapse time
between two repeated requests by the same user. Prefetching usually performs
the preloading operation within an elapse time and puts web objects into the
local browser or proxy cache server to satisfy the next user’s requests from its
local cache.

However, the Web caching and prefetching technologies are the most pop-
ular software based solutions [11, 12]. Caching and prefetching can work in-
dividually or combined. The blending of caching and prefetching (called as
pre-caching) enables doubling the performance compared to single caching
[13]. These two techniques are very useful tools to reduce congestion, delays
and latency problems. There are three most important features of web caching
[14]:

e Caching that reduces network bandwidth usage
e Caching that also reduces user-perceived delays
e C(Caching that reduce loads on the original server
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1.1 Problem in WWW Services

World Wide Web (WWW) has become the most ideal place for business and
entertainment to enrich their presentation with interactive features. This has
caused the evolution of Web growing and rising fast and drastically. Human
interaction with objects or so called interactive features has leaded the Web to
be more easily guided and capable to perform business task between distance
places. These pages are linked and managed for certain purposes that perform
as a Web application. These interactive Web pages consist of pages that are
able to perform application logical task. The rising popularity of using Web
applications in WWW causes tremendous demands on the Internet.

A key strategy for scaling the Internet to meet these increasing demands
is to cache data near clients and thus improve access latency and reduce the
network and server load [15, 16]. Mohamed et. al [17, 18, 19] has proposed an
intelligent concept of Smart Web Caching with integrated modules of artifi-
cial neural networks (ANN), environment analysis and conventional caching
procedure. The results are convincing in reducing the internet traffic flow and
enhancing performances. However, implementing this integrated analyzer in
Web caching environment causes highly computational cost [20, 17, 21] due
to the complexity of the integrated process generation.

Caching is a technique used to store popular documents closer to the user.
It uses algorithms to predict user’s needs to specific documents and stores
important documents. According to Curran and Duffy [22], caching can oc-
cur anywhere within a network, on the user’s computer or mobile devices, at
a server, or at an Internet Service Provider (ISP). Many companies employ
web proxy caches to display frequently accessed pages to their employees, as
such to reduce the bandwidth with lower costs [22, 23]. Web cache perfor-
mance is directly proportional to the size of the client community [24, 22].
The bigger the client community, the greater the possibility of cached data
being requested, hence, the better the cache’s performance [22].

Moreover, caching a document can also cause other problems. Most doc-
uments on the Internet change over time as they are updated. Static and
Dynamic Caching are two different technologies that widely used to reduce
download time and congestion [20]. Static Caching stores the content of a web
page which does not change. There is no need to request the same informa-
tion repeatedly. This is an excellent approach to fight congestion. Dynamic
Caching is slightly different. It determines whether the content of a page has
been changed. If the contents have changed, it will store the updated version
[23]. This unfortunately can lead to congestion and thus it is possibly not a
very good approach as it does require verification on the source of the data
prior to updating. If these two technologies are implemented simultaneously,
then the latency and congestion can be diminished.

According to Davison [14] caching helps to bridge the performance gap
between local activity and remote content. Caching assists improvement of
Web performance by reducing the cost and end-user latency for Web access
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within a short term. However, in the long term, even as bandwidth costs
continue to drop and higher end-user speeds become available; caching will
continue to obtain benefits for the following reasons:

Bandwidth will always have some cost. The cost of bandwidth will never
reach zero, even though the competition is increasing, the market is grow-
ing, and the economies of scale will reduce end-user costs. The cost of
bandwidth at the core has stayed relatively stable, requiring ISPs to im-
plement methods such as caching to stay competitive and reduce core
bandwidth usage so that edge bandwidth costs can be low.

Nonuniform bandwidth and latencies will persist. Because of physical limi-
tations such as environment and location as well as financial constraints,
there will always be variations in bandwidth and latencies. Caching can
help to smooth these effects.

Network distances are increasing. Firewalls, other proxies for security and
privacy, and virtual private networks for telecommuters have increased
the number of hops for contents delivery, hence slow Web response time.

Bandwidth demands continue to increase. The growth of user base, the pop-
ularity of high-bandwidth media, and user expectations of faster perfor-
mance have guaranteed the exponential increase in demand for bandwidth.

Hot spots in the Web will continue. Intelligent load balancing can alleviate
problems when high user demand for a site is predictable. However, a Web
site’s popularity can also appear as a result of current events, desirable
content, or gossips. Distributed Web caching can help alleviate these “hot
spots” resulting from flash traffic loads.

Communication costs exceed computational costs. Communication is likely
to always be more expensive (to some extent) than computation. The use
of memory caches are preferred because CPUs are much faster than main
memory. Likewise, the cache mechanisms will prolong as both computer
systems and network connectivity become faster.

Furthermore, caching is the most relevant techniques to improve storage
system, network, and device performance. In mobile environments, caching
can contribute to a greater reduction in the constraint of utilization resources
such as network bandwidth, power, and allow disconnected operation [29]. A
lot of studies are focused on developing a better caching algorithm to improve
the choice of item to replace, and simultaneously, building up techniques to
model access behavior and prefetch data. From 1990’s until today, researchers
on caching have produced different caching policies to optimize a specific per-
formance and to automate policy parameter tuning. Prior to this, administra-
tor or programmer had to select a particular parameter to observe workload
changes. However, an adaptive and self-optimizing caching algorithm offer
another advantage when considered mobile environments, where users of mo-
bile devices should not expect to tune their devices to response the workload
changes [29]. The workload depends on the current position of the mobile



Rough Web Caching 5

node in relation to other nodes and stations, and also depends on the current
location and context of the mobile user.

Caching is effectively for data with infrequent changes. Besides, caching
data locally to mobile nodes helps the ability to retrieve data from a nearby
node, rather than from a more distant base station [28]. By simply retriev-
ing data using multiple short-range transmissions in wireless environments
provides a reduction in overall energy consumed. Santhanakrishnan et al. [29]
illustrated on the demand-based retrieval of the Web documents in the mobile
Web. They proposed caching scheme; Universal Mobile Caching which per-
formed the most basic and general form of caching algorithms and largely em-
phasize the impact of the adaptive policy. This scheme is suitable for managing
object caches in structurally varying environments. Ari et al. [30] proposed
Adaptive Caching using Multiple Experts (ACME), which the individual ex-
perts were full replacement algorithms, applied to virtual caches, and their
performance was estimated based on the observed performance of the virtual
caches. The term expert refers to any mechanism for offering an answer to the
question. For cache replacement, the answer they seek is the identity of the
object in the cache with the least likelihood of subsequent future access.

Contrast to a single algorithm, there are not so many research works on
integrated schemes. Aiming at integrating caching and prefetching, Yang and
Zhang [26] employed a prediction model, whereas Teng et al. [31] presented
a new cache replacement algorithm, considering the impact of prefetching
engine located at Web server and a few cache parameters. Kobayashi and Yu
[32] discussed the performance model for mobile Web caching and prefetching
and provided the estimate of the total average latency, hit ratio, cache capacity
and wireless bandwidth required.

Prefetching is an intelligent technique used to reduce perceived congestion,
and to predict the subsequent page or document to be accessed [24, 12]. For
example, if a user is on a page with many links, the prefetching algorithm
will predict that the user may want to view associated links within that page.
The prefetcher will then appeal the predicted pages, and stores them until the
actual request is employed. This approach will display the page significantly
faster compared to the page request without prefetching. The only drawback is
that if the user does not request the pages, the prefetching algorithm will still
implement the prediction of the subsequent pages, thus causes the network to
be congested [25, 26, 27, 28].

In addition, Web prefetching method evolves from prefetching top-10 pop-
ular pages [33] or hyperlinks [34] into prefetching by user’s access patterns.
Statistical prefetching algorithms [35] make use of Markov modeling, and es-
tablish a Markov graph based on user’s access histories and make prefetching
predictions based on the graph which needs to be updated continuously while
accessing Web. Prefetching strategies in [25, 36] used data mining technique,
to decide whether to prefetch or not according to the probability of the pages
accessed recently. But it is possible that the prefetched pages are far away
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from the current page sequence so that the cache hit ratio may not benefit
from prefetching.

Hence, Web prefetching strategy need to achieve a balance between net-
work loads and performance gains. Some research studies have found that too
aggressive prefetching will increase Web access latency, since more prefetching
will lead to replacement of more cache items even including the pages that
will be accessed in near future. Under the wireless environment, Yin and Cao
[37] proposed to dynamically adjust the number of prefetching according to
power consumption for mobile data dissemination.

Wu et al. [38] introduced a rule-based modular framework for building
self-adaptive applications in mobile environments. They developed techniques
that combine static and dynamic analysis to uncover phase structure and
data access semantics of a rule program. The semantic information is used to
facilitate intelligent caching and prefetching for conserving limited bandwidth
and reducing rule processing cost. As well, Komninos and Dunlop [39] found
that calendars can really provide information that can be used to prefetch
useful Internet content for mobile users. While it is expected that such an
approach cannot fulfill the whole of Internet content needs for a user, the
work presented provided evidence to the extent to which a mobile cache can
be populated with relevant documents that the user could find of interest.
However, a foreseeable problem with the current system is that the current
adaptation algorithm adjusts the system gradually, and not immediately, to
the needs of a user. Thus, if a dramatic change of circumstances was to occur,
or if a user was to require information from a very specific and known source,
it is likely the system would fail to provide the necessary information.

2 Why Web Caching?

Web caching is the temporary storage of Web objects (such as HTML doc-
uments) for later retrieval. There are three significant advantages to Web
caching: reduced bandwidth consumption (fewer requests and responses that
need to go over the network), reduced server load (fewer requests for a server
to handle), and reduced latency (since responses for cached requests are avail-
able immediately, and closer to the client being served). Together, they make
the Web less expensive and better performing.

Caching can be performed by the client application, and is built in to
most Web browsers. There are a number of products that extend or replace
the built-in caches with systems that contain larger storage, more features, or
better performance. In any case, these systems cache net objects from many
servers but all for a single user.

Caching can also be utilized in the middle, between the client and the
server as part of a proxy. Proxy caches are often located near network gate-
ways to reduce the bandwidth required over expensive dedicated Internet con-
nections. These systems serve many users (clients) with cached objects from
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many servers. In fact, much of the usefulness (reportedly up to 80% for some
installations) is in caching objects requested by one client for later retrieval
by another client. For even greater performance, many proxy caches are part
of cache hierarchies, in which a cache can inquire of neighboring caches for a
requested document to reduce the need to fetch the object directly.

Finally, caches can be placed directly in front of a particular server, to
reduce the number of requests that the server must handle. Most proxy caches
can be used in this fashion, but this form has a different name (reverse cache,
inverse cache, or sometimes httpd accelerator) to reflect the fact that it caches
objects for many clients but from (usually) only one server [21].

2.1 How Web Caching Works?

All caches have a set of rules that they use to determine when to serve an
object from the cache, if it’s available. Some of these rules are set in the
protocols (HTTP 1.0 and 1.1), and some are set by the administrator of the
cache (either the user of the browser cache, or the proxy administrator).

Generally speaking, these are the most common rules that are followed for
a particular request [21]:

1. If the object’s headers notify the cache not to keep the object, then it
will do so. Simultaneously, if there is no validation, then most caches will
mark that as uncacheable item.

2. If the object is authenticated or secured, then it will not be cached.

3. A cached object is considered fresh (that is, able to be sent to a client
without checking with the origin server) if:

e It has an expiry time or other age-controlling directive set, and is still
within the fresh period.

e If a browser cache has already seen the object, and has been set to
check once a session.

e If a proxy cache has seen the object recently, and it was modified
relatively long ago. Fresh documents are served directly from the cache,
without checking with the origin server.

4. If an object is stale, the origin server will be executed to wvalidate the
object, or notify the cache whether the existing copy is still good.

Mutually freshness and validation are the most important mechanisms
that make cache works with content. A fresh object will be available instantly
from the cache, while a validated object will avoid sending the entire object
all over again if it has not been changed.

3 Performance Measurement for Web Optimization

Performance measurement of Web caching is needed to establish the efficiency
of a Web caching solution [9, 17, 32]. Some performance benchmarks or stan-
dards are required for a particular Web caching solution to be evaluated. Such
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benchmarks may assist in choosing the most suitable Web caching solution
for the problem we encounter. In this situation, a possibility of a particular
structure will beneficial for certain applications while other applications may
require some other substitutes.

Some organizations may choose for proxy based caching solutions. They
may try to overcome the problem of configuration Web browsers by forcing
the use of browsers that provide auto-configuration. For massive organiza-
tions, network components such as routers and switches [9, 10] might be con-
sidered; otherwise, transparent caching can be employed. Some organizations
may prefer highly scalable solutions for anticipating future needs. Besides,
organizations which Web sites contain highly dynamic content might occupy
Active Cache [41] or possibly will utilize Web server accelerators. Obviously,
the subject of measurement of performance is controlled not just to find the
competence of a given Web caching solution but also to cover evaluation of
the performance of cache consistency protocols, cache replacement algorithms,
the role of fundamental protocols such as HTTP and TCP and others.

3.1 Parameters for Measuring Web Performance

Several metrics are commonly used when evaluating Web caching policies [41].
These include [42]:

1. Hit rate is generally a percentage ratio of documents obtained by using
the caching mechanism and total documents requested. If measurement
focuses on byte transfer efficiency, then weighted hit rate is a better per-
formance measurement [43].

2. Bandwidth utilization is an efficiency metric measurement. The reduction
bandwidth consumption shows that the cache is better.

3. Response time/access time —response time is the time taken for a user to
get a document.

The are various parameters such as user access patterns, cache removal
policy, cache size and document size that can significantly affect cache perfor-
mance. Other common metrics that are used to quantify the performance of
Web caching solutions proposed by Mohamed [17] include hit ratio, byte hit
ratio, response time, bandwidth saved, script size and current CPU usage.

Performance of Web caching solutions may be quantified by measuring
parameters as follows [9]:

1. price

2. throughput (e.g. the number of HTTP requests per second generated by
users, the rate at which a product delivers cache hits etc.)

3. cache hit ratio (the ratio of the number of requests met in the cache to
the total number of requests)

4. byte hit ratio (the fraction of the number of bytes served by the cache
divided by the total number of bytes sent to its clients)
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5. the number of minutes until the first cache hit/miss after a breakdown
6. the cache age (the time after which the cache become full)

7. hit ratio/price (e.g. hits/second per thousand dollars)

8. downtime (e.g. time to recover from power outrages or cache failures)

Techniques for measuring the efficiency and usefulness of Web caching
solutions have been evolving slowly since this field is relatively a new discipline;
the theory of Web Caching has advanced much faster than practice [9].

Despite quantifying the performance of caching clarifications, other as-
pects such as client side latencies, server side latencies, aborted requests, DNS
lookup latencies, cookies, different popularity characteristics among servers,
the type of content, network packet losses should not be disregarded since
there are some parameters are interrelated. For illustration, hit ratio is af-
fected by inadequate disk space in a cache server, and these lacking in the ob-
ject placement/replacement policies can cause the network to be overloaded.
Hence, by maximizing a single parameter alone may not be adequate [9].

4 Uncertainty in Web Caching

Uncertainty, as well as evolution, is a part of nature. When humans describe
complex environments, they use linguistic descriptors of cognized real-world
circumstances that are often not precise, but rather ”fuzzy”. The theory of
fuzzy sets [44] provides an effective method of describing the behavior of a
system, which is too complex to be handling with the classical precise mathe-
matical analysis. The theory of rough sets [61] emerged as another mathemat-
ical approach for dealing with uncertainty that arises from inexact, noisy or
incomplete information. Fuzzy set theory assumes that the membership of the
objects in some set is defined as a degree ranging over the interval [0,1]. Rough
Set Theory (RST) focuses on the ambiguity caused by the limited distinction
between objects in a given domain.

Uncertainty occurs in many real-life problems. It can cause the information
used for problem solving being unavailable, incomplete, imprecise, unreliable,
contradictory, and changing [46]. In computerized system, uncertainty is fre-
quently managed by using quantitative approaches that are computationally
intensive. For example, a binary that processes ‘TRUE or FALSE’, or ‘YES’
or ‘NO’ type of decisions, is likely to arrive at a conclusion or a solution faster
than one that needs to handle uncertainty.

Organizing uncertainty is a big challenge for knowledge-processing systems
[46]. In some problems, uncertainty can possibly be neglected, though at the
risk of compromising the performance of a decision support system. However,
in most cases, the management of uncertainty becomes necessary because of
critical system requirements or more complete rules are needed. In these cases,
eliminating inconsistent or incomplete information when extracting knowledge
from an information system may introduce inaccurate or even false results,
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especially when the available source information is limited. Ordinarily, the
nature of uncertainty comes from the following three sources: incomplete data,
inconsistent data, and noisy data.

Thus, in a proxy cache, the superfluous of logs dataset with the huge
number of records, the frequency of errors (incomplete data), and the diversity
of log formats (inconsistent data) [10] will ground the practical challenges to
analyze it either to cache or not cache objects in the popular documents. Table
1 depicts the sample of Web log data from Boston University Web Trace [47].

Table 1. Sample Web log data

bugs 791131220 682449 ”http://cs-www.bu.edu/” 2009 0.518815

bugs 791131221 620556 ”http://cs-www.bu.edu/lib/pics/bu-logo.gif” 1805
0.320793

bugs 791131222 312837 “http://cs-www.bu.edu/lib/pics/bu-label.gif” 717
0.268006

bugs 791131266 55484 ”http://cs-www.bu.edu/courses/Home.html” 3279
0.515020

bugs 791131266 676413 ”http://cs-www.bu.edu/lib/pics/bu-logo.gif” 0 0.0
bugs 791131266 678045 ”http://cs-www.bu.edu/lib/pics/bu-label.gif” 0 0.0
bugs 791131291 183914 ”http://cs-www.bu.edu/students/grads/tahir/CS111/”
738 0.292915

bugs 791131303 477482 "http://cs-www.bu.edu/students/grads/tahir/CS111/
hw2.ps” 41374 0.319514

bugs 791131413 265831 "http://cs-www.bu.edu/students/grads/tahir/CS111 /if-
stat.ps” 10202 0.380549

bunsen 791477692 218136 "http://cs-www.bu.edu/” 2087 0.509628

bunsen 791477693 134805 ”http://cs-www.bu.edu/lib/pics/bu-logo.gif” 1803
0.286981

bunsen 791477693 819743 “http://cs-www.bu.edu/lib/pics/bu-label.gif” 715
0.355871

bunsen 791477719 107934 ”http://cs-www.bu.edu/techreports/Home.html” 960
0.335809

bunsen 791477719 518262 "http://cs-www.bu.edu/lib/pics/bu-logo.gif” 0 0.0
bunsen 791477719 520770 ”http://cs-www.bu.edu/lib/pics/bu-label.gif” 0 0.0

4.1 How Rough Set Boost Up Web Caching Performance?

Another approach to represent uncertainty is using Rough Set (RS). RS are
based on equivalence relations and set approximations, and the algorithms for
computing RS properties are combinatorial in nature. The main advantages
of RST are as follows [48]:
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It does not need any preliminary or additional information about data;
It is easy to handle mathematically;
Its algorithms are relatively simple.

Wakaki et al. [48] used the combination of the RS-aided feature selection
method and the support vector machine with the linear kernel in classifying
Web pages into multiple categories. The proposed method gave acceptable
accuracy and high dimensionality reduction without prior searching of better
feature selection. Liang et al. [55] used RS and RS based inductive learning
to assist students and instructors with WebCT learning. Decision rules were
obtained using RS based inductive learning to give the reasons for the student
failure. Consequently, RS based WebCT Learning improves the state-of-the-
art of Web learning by providing virtual student/teacher feedback and making
the WebCT system much more powerful.

Ngo and Nguyen [50] proposed an approach to search results clustering
based on tolerance RS model following the work on document clustering. The
application of tolerance RS model in document clustering was proposed as
a way to enrich document and cluster representation to increase clustering
performance. Furthermore, Chimphlee et al. [51] present a RS clustering to
cluster web transactions from web access logs and using Markov model for next
access prediction. Users can effectively mine web log records to discover and
predict access patterns while using this approach. They perform experiments
using real web trace logs collected from www.dusit.ac.th servers. In order to
improve its prediction ration, the model includes a rough sets scheme in which
search similarity measure to compute the similarity between two sequences
using upper approximation.

In [52], the authors employed RS based learning program for predicting
the web usage. In their approach, web usage patterns are represented as rules
generated by the inductive learning program, BLEM?2. Inputs to BLEM?2 are
clusters generated by a hierarchical clustering algorithm that are applied to
preprocess web log records. Their empirical results showed that the prediction
accuracy of rules induced by the learning program is better than a centroid-
based method, and the learning program can generate shorter cluster descrip-
tions.

In general, the basic problems in data analysis that can be undertaken by
using RS approach is as follows [46]:

Characterization of a set of objects in terms of attribute values;
Finding the dependencies (total or partial) between attributes;
Reduction of superfluous attributes (data);

Finding the most significant attributes;

Generation of decision rules.
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4.2 A Framework of Rough Set

The RClass system integrates RST with an ID3-like learning algorithm [46]
as shown in Figure 1. It includes three main modules; a consistency analyzer,
a rough classifier and an induction engine. The consistency analyzer analy-
ses the training data and performs two tasks; elimination of redundant data
items, and identification of conflicting training data. The rough classifier has
two approximators; the upper approximator and the lower approximator. The
rough classifier is employed to treat inconsistent training data. The induction
engine module has an ID3-like learning algorithm based on the minimum-
entropy principle. The concept of entropy is used to measure how informative
an attribute is.

Input Data
Consistency R dundant?
A
agset i | Reduce the Data 5t |
4 ]
.................................. ,

| Calculate Approximations I

¥ v

Lawer Upper
Fpproximation Fpprovimation

Rough
Classifier

| Rule hduction l

Induction * *‘ +
Engine i Certain Rules | I Pozsible Rules |

l Reliability

| Output |

Fig. 1. Framework of the RClass System [46]
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5 Rough Sets and Inductive Learning

Rough Set Theory [53] was introduced by Zdzislaw Pawlak as a tool to solve
problems with ambiguity and uncertainty [46]. Typically, data to be analyzed
consists of a set of objects whose properties can be described by multi-valued
attributes. The objects are described by the data that can be represented by
a structure called the information system (S) [62]. An information system
can be viewed as information table with its rows and columns consequent to
objects and attributes.

Given a set F of examples described by an information table T', we classify
objects in two different ways: by a subset C of the condition attributes and
by a decision attribute D in the information table to find equivalence classes
called indiscernibility classes 2 ={{21,...,£2,} [565]. Objects within a given
indiscernibility class are indistinguishable from each other on the basis of
those attribute values. Each equivalence class based on the decision attribute
defines a concept. We use Des(£2;) [55] to denote the description, i.e., the set
of attribute values, of the equivalence class {2;. RS theory allows a concept
to be described in terms of a pair of sets, lower approximation and upper
approximation of the class. Let Y be a concept. The lower approximation Y
and the upper approximation Y of Y are defined as [55]:

Y={e€ Ele€ 2;andX; CY} (1)

Y= {6 S E|6 € ;andX; NY :(Z)} (2)

Lower approximation is the intersection of all those elementary sets that are
contained by Y and upper approximation is the union of elementary sets that
are contained by Y.

Inductive Learning is a well-known area in artificial intelligence. It is used
to model the knowledge of human experts by using a carefully chosen sample
of expert decisions and inferring decision rules automatically, independent
of the subject of interest [56]. RS based Inductive Learning uses RS theory
to find general decision rules [57, 58]. These two techniques are nearness to
determine the relationship between the set of attributes and the concept.

5.1 Rough Set Granularity in Web Caching

In our research, BU Web trace dataset from Oceans Research Group at Boston
University are used [47]. We considered 20 sample objects only, i.e., Jan-
uary 1995 records. In our previous research, we used the same dataset with
implementation of RS [59] and integration of Neurocomputing and Particle
Swarm Optimization (PSO) algorithm [60] to optimize the Web caching per-
formance. Three conditional attributes are taken into consideration; number
of hits (Timestamp, TS) in integer, a current CPU usage (Sizedocument, SD)
in percentage and response time (Objectretrievaltime, RT) in seconds. Con-
sequently, a cache, C'A is chosen as a decision for the information table; 1
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for cache and 0 for not cache. Decision rules are obtained using RS based
Inductive Learning [57] for Web caching. Table 2 depicts the structure of the
study: 20 objects, 3 attributes, and a decision.

Table 2. Sample of log files dataset information table

Object Attributes Decision
TS SD RT CA
S1 790358517 367 0.436018 0
S2 790358517 514 0.416329 0
S3 790358520 297 0.572204 0
Sa 790358527 0 0 1
Ss 790358529 0 0 1
Ss 790358530 0 0 1
S7 790358530 0 0 1
Ss 790358538 14051 0.685318 0
So 790362535 1935 1.021313 0
S0 790362536 1804 0.284184 0
Si1 790362537 716 0.65038 0
Sio 790363268 1935 0.76284 0
Sis 790363270 716 1.050344 0
S1a 790363270 1804 0.447391 0
Sis 790363329 1935 0.553885 0
Si6 790363330 716 0.331864 0
Si7 790363330 1804 0.342798 0
Sis 790363700 0 0 1
S19 790363700 0 0 1
S0 790363700 1136 0.428784 0

Detailed description and analysis are given in Table 3. The domain FE and
two concepts Yeache and Yyorcache from the decision attribute (CA) are ob-
tained as follows:

E= {61,62,63,64,65,66,67,68,69,610,611,612,613,614,615,616,617,618}

Yeache = {e€a,e5,€6,€17}

Yootcache = {€1,€2,€3, €7 €3 €9 €10,€11,€12,€13,€14,€15,€16,€18 }

Initially we find the indiscernibility classes based on T'S that are {e1, e2},{€12, €13},
{e1s, e16}{e1r, exstand{es}, {es} {es}.{es} {7}, {es}.{eo} {er0} {e11}, {e14}.
The lower approximation is Y= Ug,c, 2;=0.

The upper approximation is ?:Uglny?g@ ;= {e1,ea, €12, €13, €15, €16, €17, €18 } -

The discriminant index of a concept Y is defined using the following for-
mula:

aci(Y)=1-[Y —Y|/|E| 3)

Consequently, the discriminant index of TS is acy (V) =1— Y - Y|/|E| =
1-(8-0)/20 = 0.6 determines the effectiveness of the singleton set attributes
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consisting of T'S in specifying the membership in Y (the cache concept). Sub-
sequently, the indiscernibility classes of SD is conducted and the results are
{es, €5, €6, €e17},{€10, €12, €15}, {e9, €13, €16},{es, €11, €14} and
{e1},{e2},{es},{er}, {e1s}. The lower approximation is illustrated as
Y=Ugq,cy $2i={ei}.{e2}.{es}, {er},{e1s}. The upper approximation is given
as Y=Ug,ny 20 2= {ea, 5, €6, €17, €10, €12, €15, €9, €13, €16, €8, €11, €14 } . Hence,
the discriminant index of SD is ace (Y) =1 —1|Y —Y|/|E|= 1-(13-5)/20 =
0.6.

The indiscernbility classes based on RT are {eq4, €5, es,e17} and {e1 },{ea},
{es}.{er}{es}{eo}{er0}.{en} {era} {ers} {era} {e1s} {e16}.{e1s}. The lower
approximation is given as Y= Ug,cy 2;=0. The upper approximation is
?:Ugmy?g@ £2;= {ey4, €5, €6, €17} The discriminant index of RT is ac3 (V) =
1—-|Y-Y|/|IE|=1-(6-0)/20 = 0.7.

By comparing the discriminant indices of all attributes, we identify that
the discriminant index of RT has the highest value, aconditions(Y )= 0.7. This
value determines better membership in Y. Hence, the first rule is obtained as:

R, : {Objectretrievaltime = 0} = {Cache = 1}

Since RT is the most important condition attribute, we merge this condi-
tion attribute with other condition attributes to produce a new domain and
to execute new rules (refer to Table 3).

To discover the new domain, initially, the following equation is used to re-
move unnecessary elements. (E —Y)U(Y) = {e1, e, €3, €7, €3, €9, €10, €11, €12,
€13, €14, €15, €16} UD. The new element set are given as, (E—[(E—-Y)U(Y)] =
(E - {61,62, €3, €7, €8, €9, €10, €11, €12, €13, €14, €15, 616} U Q) = {64765;867617}

Subsequently, the horizontal selection of the collapsed information table is
obtained (Table 4). The total number of objects becomes 6.

The illustrations of this selected information table are given as Y.uche
= {eq,e5,¢€6,€17} and Yootcache= 0, and the domain is E= {ey,es5, €6, €17}
We locate the indiscernibility classes based on SD and RT as (). The
lower approximation is Y= Ug,cy 2,=0 and the upper approximation is
Y=Ug,ny.o ;= {e4, €5, €6, €17}. The discriminant index of SD and RT is
acz,cs (Y)=1-|Y —Y|/|[E|=1-(6-0)/6 =0.

The indiscernibility classes based on T'S and RT is {eq4,es,es,e17}. The
lower approximation is Y= Ugp,cy 2,={eu, es5, €5, €17} and the upper approx-
imation is Y= U,ny 0 §2i = {ea, e5,¢e6,e17}. The discriminant index of T'S
and RT is ac1,c3(Y)=1-|Y =Y|/|E|=1- (6-6)/6 = 1.

By comparing the discriminant indices, we discover that aci,c3 (V) =1
best determines the membership in Y. Thus, we attain the sample of second
rule:

R, : { Timestamp = 790358527, Objectretrievaltime = 0} ={Cache

=1}
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Table 3. Collapsed log files dataset information table

Object ?gtrlbutes - - ]gjmsmn Total
el 790358517 367 0.436018 0 1
ez 790358517 514 0.416329 0 1
es 790358520 297 0.572204 0 1
ey 790358527 0 0 1 1
es 790358529 0 0 1 1
es 790358530 0 0 1 2
er 790358538 14051 0.685318 0 1
es 790362535 1935 1.021313 0 1
eg 790362536 1804 0.284184 0 1
el 790362537 716 0.65038 0 1
el 790363268 1935 0.76284 0 1
el 790363270 716 1.050344 0 1
e1s 790363270 1804 0.447391 0 1
€14 790363329 1935 0.553885 0 1
eis 790363330 716 0.331864 0 1
el 790363330 1804 0.342798 0 1
eir 790363700 0 0 1 2
e1s 790363700 1136 0.428784 0 1
Table 4. Horizontal selection of collapsed table
. Attributes Decision

Object TS SD RT |CA Total

e4 790358527 0 0 1 1

es 790358529 0 0 1 1

es 790358530 0 0 1 2

eir 790363700 0 0 1 2

Two rules have been found. If new domain is uncovered and new rules are
computed using the same method as previous, then the irrelevant elements
can be removed as (E —Y)U (Y) = 0 U {e4, e5, €, €17}-

By referring to Table 3, we can see that the first set is empty and the
second set has been handled by rule 2. Hence, the new set of elements becomes
(E - [(E - Y) U (X)] = {647 €5, €6, 617}'

Based on this assumption, we obtain supplementary collapsed information
table in which SD and RT are omitted due to superfluous attributes (see
Table 5).

The rules are fruitfully induced. A question that rises is how much we can
believe in these rules. Therefore, we need to evaluate the strength of the rules
as follows [61, 62]:

# of positive objects covered by the rule

# of objects covered by the rule (including both positive and negative)



Table 5. Further horizontally collapsed reduction table
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Object ?tstrlbutes ]gjcmmn Total
ey 790358527 1 1
es 790358529 1 1
eg 790358530 1 2
eir 790363700 1 2

17

Based on this equation, the first rule has strength of 6/20. It shows that

30% Classes of ey, e5, €5, ande;7 (Table 3) are positive examples covered by the
rule. Class e; is a negative example covered by the first rule. The second rule
has the strength of 6/6, that is, 100%. In applying the first rule to this object,
there is a 30% chance that the reason for cache the object is exclusively the
cache of RT. However, there is a higher probability that the reason for cache
is due to extra timing of T'S and RT, due to 100% strength of the second rule.

Algorithm 1 illustrates the algorithm of rules induction using RS [57].

Algorithm 1 Rough set algorithm [57]

01.For each decision class do
02.begin
Initialise universe of objects

03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Select decision class
Find class relation

Repeat

For each attribute do

begin

Select attribute

Find equivalence relation

Find lower subset
Find upper subset

Calculate discriminant index

end

Select attribute with highest discriminant index
Generate rules

Reduce universe of objects

Reduce class relation
Until no objects with selected decision class
20.end

This part presents substantial RS analysis based on Inductive Learning

methods to optimize Web caching performance to probe significant attributes
and generate the decision rules. RS granularity in Web caching allows deci-
sion rules to be induced. These rules are important in optimizing user storage
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by executing caching strategy in specifying the most relevant condition at-
tributes. This approach provides guidance to the administrator in Web caching
regarding to selection of the best parameters to be cached. Based on this anal-
ysis, the administrator may reorganize the parameter of log data set in proxy
caching accordingly.

6 Experimental Results

In this part describes experimental results of dataset for HT TP requests and
user behavior of a set of Mosaic clients running in the Boston University (BU),
Computer Science Department [47].

6.1 BU Log Dataset

In this experiment, BU Web Trace collected by Oceans Research Group at
Boston University is employed. BU traces records consist of 9,633 files with
a population of 762 different users, and recording 1,143,839 requests for data
transfer. The data for January 1995 comprises of 11 to 220 users with 33,804
records. However, after data cleaning, only 10,727 dataset is left.

Moreover, in this research RS is exploited to reduce the rules of a log file
and simultaneously to enhance the prediction performance of user behavior.
RS is beneficial in probing the most significant attributes with crucial deci-
sion rules to facilitate intelligent caching and prefetching to safeguard limited
bandwidth and minimize the processing cost.

The dataset is split in two; 70% (7,187 objects) for training and 30% (3,540
objects) for testing. To simplify data representation, a Naive Discretization
Algorithm (NA) is exploited and Genetic Algorithm (GA) is chosen to gen-
erate the object rules. Next, Standard Voting Classifier (SVC) is selected to
classify the log file dataset. The derived rules from the training are used to
test the effectiveness of the unseen data. In addition, 3-Fold Cross Validation
is implemented for validation of our experiment. First fold (K1) the testing
data from 1 to 3540, second fold (K2) from 3541 to 7081 and third fold (K3)
from 7082 to 10622. Data are stored in decision table. Columns represent at-
tributes, rows represent objects whereas every cell contains attribute value for
corresponding objects and attributes. A set of attributes are URL, Machine-
name, Timestamp, Useridno, Sizedocument, Objectretrievaltime, and Cache
as a decision.

6.2 Data Discretization and Reduction

Training data is discretized using NA. This discretization technique is imple-
mented a very straightforward and simple heuristic that may result in very
many cuts, probably far more than are desired. In the worst case, each ob-
served value is assigned its own interval. GA is used for reduct generation [63]
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as it provides more exhaustive search of the search space. Reducts genera-
tion have two options [64]; full object reduction and object related reduction.
Full object reduction produces set of minimal attributes subset that defines
functional dependencies, while reduct with object related produce a set of de-
cision rules or general pattern through minimal attributes subset that discern
on a per object basis. The reduct with object related is preferred due to its
capability in generating reduct based on discernibility function of each object.

Table 6 illustrates the comparison results of generation of a log file dataset
in different K-fold (K1, K2 and K3). The highest testing accuracy is 98.46%
achieved through NA discretization method and GA with full reduct method.
Number of reducts for K1, K2 and K3 are equivalent. Object related reduct,
22 and full reduct, 6. In our observation, the highest number of rules are GA
with full reduct, 63311 for K1, K2 and K3 and the highest testing accuracy is
GA with full reduct for K1, 98.46%.

Table 6. Comparison reduct for K1, K2 and K3

Discretize Method |Reduct Method K-fold |No.of |No.of Testing
Reduct |Rules Accuracy

(%)
K1 22 26758 |96.8644
GA (object related)|K2 22 26496 96.8644
K3 2 26496 [96.8079
NA K1 6 63311 |98.4618
GA (full object)  [K2 6 63311 [5.76271
K3 6 63311 [5.79096

6.3 Rules Derivation

A unique feature of the RS method is its generation of rules that played
an important role in predicting the output. ROSETTA tool has listed the
rules and provides some statistics for the rules which are support, accuracy,
coverage, stability and length. Below is the definition of the rule statistics [64]:

e The rule LHS support is defined as the number of records in the training
data that fully exhibit property described by the IF condition.

e The rule RHS support is defined as the number of records in the training
data that fully exhibit the property described by the THEN condition.

e The rule RHS accuracy is defined as the number of RHS support divided
by the number of LHS support.

e The rule LHS coverage is the fraction of the records that satisfied the IF
conditions of the rule. It is obtained by dividing the support of the rule
by the total number of records in the training sample.
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e The rule RHS coverage is the fraction of the training records that satisfied
the THEN conditions. It is obtained by dividing the support of the rule by
the number of records in the training that satisfied the THEN condition.

The rule length is defined as the number of conditional elements in the
IF part. Table 7 shows the sample of most significant rules. These rules are
sorted according to their support value. The highest support value is re-
sulted as the most significant rules. From the Table 7, the generated rule
of {Sizedocument(0) = Cache(1)} is considered the most significant rules
with the outcome of not cache (output=0) and with cache (output=1). This
is supported by 3806 for LHS support and RHS support value. Subsequently,
the impact of rules length on testing accuracy are evaluated based on rules set
from Table 7. Consequently, the same rules are divided into two groups; 1<
rules of length <2. It seems that the rules with length >1 contribute better
classification compared to the rules with length <2.

Table 7. Sample for sorted of highest rule support values from data decision table
for K1, K2 and K3

Rule LHS RHS LHS |RHS
Support |Support |Length |Length

K1

Sizedocument(0) = Cache(1) 3806 3806 1 1

Objectretrievaltime(0.000000) = Cache(1) |3805 3805 1 1

Sizedocument(2009) = Cache(0) 233 233 1 1

Sizedocument(717) = Cache(0) 128 128 1 1

K2

URL(http://cs-www.bu.edu/lib/pics/bu- 1009 1009 2 1

logo.gif) AND Sizedocument(0) = Cache(1)

URL(http://cs-www.bu.edu/lib/pics/bu- 1009 1009 2 1

logo.gif) AND Objectretrievaltime(0.00000)

= Cache(1)

Machinename(beaker) ~ AND  Sizedocu-|308 308 2 1

ment(0) = Cache(1)

Machinename(beaker) AND Objectretrieval-|308 308 2 1

time(0.00000) = Cache(1)

K3

URL(http://cs-www.bu.edu/lib/pics/bu- 989 989 2 1

logo.gif) AND Objectretrievaltime(0.00000)

= Cache(1)

URL(http://cs-www.bu.edu/lib/pics/bu-  |989 989 2 1

logo.gif) AND Sizedocument(0) = Cache(1)

Machinename(beaker)  AND  Sizedocu-|306 306 2 1

ment(0) = Cache(1)

Machinename(beaker) AND Objectretrieval-|306 306 2 1

time(0.00000) = Cache(1)
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6.4 Classification

From the analysis, it shows that the classification is better. Furthermore, the
core attributes and the significant rules can improve the accuracy of classifi-
cation. Table 8 shows the result of classification performance of K1, K2 and
K3 for the original table and the new decision table of log file dataset. Hence,
Figure 2 depicts an overall accuracy for log file, 36.67% for all rules in orig-
inal decision table and 96.85% for selected rules in new decision table. This
result shows a different of overall accuracy up to 60.18% between the original
decision table and new decision table.

Table 8. Classification performance of K1, K2 and K3 for both original decision
table and new decision table of log file dataset

Decision Table Rule Set K-fold Accuracy  |Overall
(%) Accuracy
(%)
K1 96.8644
New decision table Selected rules |K2 96.8644 96.85
K3 96.8079
K1 98.4618
Original decision table |All rules K2 5.76271 36.67
K3 5.79096

£ 120

100 -
E: a0 W Mew deciziontable
g Selected rules
o B0 1 5 i
S a4n - O Criginal decizion taple Al
% 20 rules
} 0
E Selected rules All rules
o

Mew decizion table COriginal decizion
tahle

Decision Table

Fig. 2. Overall classification accuracy for both original decision table and new
decision table of log file dataset
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7 Conclusions

This chapter illustrated the usage of rough set theory for performance en-
hancement of Web caching. The RClass System framework [46] is used as a
knowledge representation scheme for uncertainty in data for optimizing the
performance of proxy caching that use to store the knowledge discovery of
user behaviors in log format.

Furthermore, substantial RS analysis based on Inductive Learning meth-
ods is presented to optimize Web caching performance to probe significant
attributes and generate the decision rules. RS granularity in Web caching al-
lows decision rules to be induced. These rules are important in optimizing
users’ storage by executing caching strategy in specifying the most relevant
condition attributes. This approach provides guidance to the administrator
in Web caching regarding to selection of the best parameters to be cached.
Based on this analysis, the administrator may reorganize the parameter of log
data set in proxy caching accordingly.

Moreover, an empirical study has been conducted for searching optimal
classification. A RS framework for log dataset is illustrated mutually with
an analysis of reduced and derived rules, with entrenchment of their implicit
properties for better classification outcomes.

In the future, more experiments on huge data will be conducted on hy-
bridization of RS and evolutionary computation to deal with multiple knowl-
edge of Web caching in reducing network latency.
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