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Abstract. Multimodal optimization is used to find multiple global & local optima 
which is very useful in many real world optimization problems. But often 
evolutionary algorithms fail to locate multiple optima as required by the system. 
Also they fail to store those optima by themselves. So we have to use other 
selection scheme that can detect & store multiple optima along with evolutionary 
algorithms. Hence we use niching which is a very powerful tool in detecting & 
storing multiple optima. Niching methods were introduced to EAs to allow 
maintenance of a population of diverse individuals so that multiple optima within 
a single population can be located .Crowding which is a very primitive branch of 
niching is used here as the selection scheme with Invasive Weed Optimization 
(IWO) which is a ecologically inspired algorithms depicting behaviors of plants . 
For multimodal optimization the total search space is divided into several niches 
in which separately IWO is applied to find the optima in niches. The niches will 
also store this optima within themselves. 
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1   Introduction 

In practical optimization problems, it is often desirable to simultaneously locate 
multiple global and local optima of a given objective function. A multimodal 
optimization task amounts to finding multiple optimal solutions and not just one 
single optimum, as it is done in a typical optimization study. If a point-by-point 
classical optimization approach is used for this task, the approach must have to be 
applied several times, every time hoping to find a different optimal solution.  

Evolutionary Algorithms (EAs) [1, 2], due to their population-based approach, 
provide a natural advantage over classical optimization techniques. They maintain 
a population of possible solutions, which are processed every generation, and if 
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the multiple solutions can be preserved over all these generations, then at 
termination of the algorithm we will have multiple good solutions, rather than 
only the best solution.  Niching [3 – 5] is a generic term referred to as the 
technique of finding and preserving multiple stable niches, or favorable parts of 
the solution space possibly around multiple solutions, so as to prevent 
convergence to a single solution. the most popular niching techniques used in 
conjunction with the evolutionary computation community include crowding [7], 
fitness sharing [6], restricted tournament selection [8], and speciation [9]. Most of 
existing niching methods, however, have difficulties which need to be overcome 
before they can be applied successfully to real-world multimodal problems. Some 
identified issues include: difficulties to pre-specify some niching parameters; 
difficulties in maintaining discovered solutions in a run; extra computational 
overhead, and poor scalability when dimensionality is high. 

In this paper we propose a simple yet very powerful hybrid EA that 
synergistically combines the features of two EAs: Invasive Weed Optimization 
(IWO) [10] and Neighbourhood Crowding technique[19] for multimodal 
optimization. The reason for employing the IWO in multimodal optimization 
process is its high explorative power [10] over the bound-constrained search space 
[11]. Each weed initialized in the search space, produces seeds around it, in a 
controlled hyper-space thus creating virtual subpopulation of seeds. Hence after a 
sufficient number of generations the colony is basically spread in sub-regions 
surrounding promising local and global optima. The crowding scheme is applied 
along with IWO as described in the proposed algorithm in order to preserve the 
niches throughout the computation and the maximum number of global peaks can 
be obtained. [12-17] 

2   Evolutionary Multi-modal Optimization Using Niching 

If a single-objective optimization problem has more than one optima, it can be 
considered as multimodal optimization problem. The objective of locating & 
storing different optima in a single run makes it more complicated than single 
global optimization. Niching methods, formed for extending EAs to multimodal 
optimization, address this problem by maintaining the diversity of certain 
properties within the population - and this way they allow parallel convergence 
into multiple optimal solutions in multimodal domains. The concept of niching is 
inspired by the way organisms evolve in nature. As Mahoud described [3], “A 
niching method must be able to form and maintain multiple, diverse, final 
solutions, whether these solutions are of identical fitness or of varying fitness. A 
niching method must be able to maintain these solutions for an exponential to 
infinite time period, with respect to population size.” The process involves the 
formation of subpopulations within a population. Each subpopulation aims to 
locate one optimal solution and together the whole population is expected to locate 
multiple peaks in a single run. Several niching methods were proposed in 
literature e.g. crowding, deterministic crowding, fitness sharing], derating, 
restricted tournament selection, parallelization, clustering, clearing and speciation 
.We shall briefly review only crowding technique below. 
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Crowding and restricted tournament selection: In 1975, De Jong introduced 
the classical crowding method [26] known as De Jong’s crowding that tries to 
maintain population diversity by allowing competition for limited resources 
among similar individuals in the population. Hence, effectively the competition 
takes place within each niche. Generally the similarity is measured using 
Euclidean distance between individuals. The algorithm compares an offspring 
with some randomly selected individuals from the current population. The most 
similar individual will be replaced if the offspring is a better solution. A parameter 
CF called crowding factor is used to control the size of the sample. CF is 
generally set to 2 or 3. Because of this low CF values, replacement errors is one of 
the main problem for crowding. Mahoud tried to improve the original crowding by 
proposing a scheme of deterministic crowing. It eliminates the CF, reduces the 
replacement errors, and restores selection pressure.  

In very similar spirit to crowding, the restricted tournament selection [8] 
method selects a random sample of w (window size) individuals from the 
population and determines which one is the nearest to the offspring, by either 
Euclidean (for real variables) or Hamming (for binary variables) distance measure. 
The nearest member within the w individuals will compete with the offspring and 
the one with higher fitness will survive in the next generation. 

Apart from the above, several other niching methods have also been developed 
over the years, including fitness sharing clearing, speciation, derating, 
parallelization, and clustering. To the best of our knowledge, IWO has not been 
applied to solve the multimodal optimization problems till date. 

3   IWO and Its Proposed Modification 

IWO is a population-based algorithm based on trial and error method that copies 
the colonizing behavior of weeds. Weed grows its population entirely or 
predominantly in a geographically specified area which can be substantially large 
or small without any control of any external factor in a very random manner. 
Initially a certain number of weeds are randomly spread over the entire search 
range. These weeds will eventually grow up and execute the following steps and 
the algorithm proceeds. 

3.1   Classical Invasive Weed Optimization 

There are four steps in the classical IWO algorithm as described below: 

Initialization: A finite number of weeds are initialized randomly in the search 
space. 
Reproduction: Each member of the population is allowed to produce seeds 
depending on its own, as well as the colony’s lowest and highest fitness, such that, 
the number of seeds produced by a  weed increases linearly from lowest possible 
seed for a weed with the worst fitness to the maximum number of seeds for a weed 
with the best fitness. 
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Spatial Distribution: The generated seeds are randomly scattered over the d-
dimensional search space by perturbing them with normally distributed random 
numbers with zero mean and a variable variance. This step ensures that the 
produced seeds will be generated around the parent weed, leading to local search 
around each plant. However, the standard deviation (sd) of the random function is 

made to decrease over iterations. If maxsd and minsd  are the  maximum and 

minimum standard deviations and if  pow  is a real number, then the standard 

deviation for a particular iteration can be given as in eqn (1): (iter is current 
iteration) 

                    
( )max

max min min
max

,
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ITER

iter iter
sd sd sd sd
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⎝ ⎠

               (1) 

Competitive Exclusion: Some kind of competition between plants is needed for 
limiting maximum number of plants in a colony. Initially, the plants in a colony 
will reproduce fast and all the produced plants will be included in the existing 
colony, until the number of plants in the colony reaches a maximum 

value maxpop . However, it is expected that by this time the fitter plants have 

reproduced more when compared to weaker plants. From then on, only the fittest 
plants up to pop_max, among the existing ones and the reproduced ones, are taken 
in the colony and steps 2 to 4 are repeated until the maximum number of iterations 

has been reached, i.e. the colony size is fixed from thereon to maxpop . This 

method is known as competitive exclusion and is also a selection procedure of 
IWO.  

3.2   The Proposed Crowding IWO Algorithm 

The crowding IWO algorithm is based on the application of Invasive Weed 
Optimization (IWO) with the selection scheme used for multimodal optimization 
is a niching method crowding. At first we initialize some plants or particles within 
the search space randomly. Then their individual fitness are calculated as per the 
function used . Now depending on the fitness of the individuals & the best & 
worst fitness of the colony each plant produces certain number of seeds which 
linearly decreases from best to worst fitness. Now these seeds are also spread 
randomly in the search space with a particular standard deviation, functions that 
decreases with iteration & hence plants with better fitness produces large number 
of seeds close to it which becomes a potential solution for the test function. 

Now the crowding scheme is used here as the selection scheme where the entire 
population is divided into several subpopulation . That’s how the niches are 
formed. The number of subpopulation is a niching parameter that has to be given 
by the user. The plants within a particular niche produces seeds & the seed most 
identical to its parent plant i.e. which has a minimum Euclidean distance to its 
parent plant is selected .If the seed has a better fitness than its parent then the seed 
replaces its parent plant. Now in this way total population is updated & if it 
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exceeds the maximum number of member of the population then the plants with 
better fitness are kept & others are removed from the search space. In this way the 
niches turn out to be potential solutions for multimodal optimization. 

3.3   Pseudo Code 
 

 

4   Experiments and Results 

The computing was achieved on a Pentium 4 computer running at 3.0 GHz 
equipped with 1.5 GB of RAM. Results are presented for benchmark functions 

Initialize a population within search area randomly 
Find the fitness value for the given function 
While(iter<maxit) 

=iterσ ((maxit-iter)^mi/(maxit^mi)*(σ ini-σ fi)+σ fi; 
Find  the seeds of the plants 
Seed(1)=(fit(1)-maxfit)*(max no. _seeds-min no._seeds)/(max_fit-min_fit); 
Convert the seeds into plants; 
Update the total no. of plants; 
For j=1 to plants 

For i=1:seeds_of_plants (j) 
Pos_seed (i)=pos_plant(j)+ σ iter*randl; 

End 
Update position of plants 

End 
If pos_plant<LB 

Pos_plant=LB; 
End 
If pos_plant>UB 

Pos_plant=UB; 
End 
Find the Euclidean distance between parent plant &its off-springs 
Total population is distributed into sp number of subpopulation; 
Size_subpop=total_pop/sp; 
Within each subpop if the seed with min distance with its parent has a better    

fitness  
Replace the parent with that seed  
Update total population 
If(no._plants>max_plant) 

Eliminate the plants with poor fitness  & keep the no_plants  maxplant  with 
better fitness  

Iter=iter+1; 
End while 
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given in the tables below where both composite & simple test functions. The 
results of this algorithm is also represented in a tabular form  giving a comparison 
between the other standard algorithms.  

Parametric Setup:  
The following parameters were used while performing the experiments: 
Maximum number of iterations (maxit):1000 
Initial value of standard deviation (σ ini):3 

Final Value of standard deviation (σ fi)=.0001 

Maximum number of seeds from each plant (Max no. _ seeds):5 
Minimum number of seeds from each plant (Min no. _ seeds):0 
Number of subgroups formed within the population: sp 
Maximum number of weeds (Max_plant):150 
The composite functions in this experiment are the composite functions in [12] 

Table 1. Benchmark Functions 

Name Dim Test Function Range Peaks 
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The peak accuracy measure [20] is calculated  as follows: for  each  global 
optimum to be found, the closest   individual  x  in  the  population  is  taken  and  
the  absolute  difference  in  fitness values is computed  after maximum number of 
function  evaluations has been elapsed. Then, all these differences are summed 
and divided by the number of global optima to be found. The peak accuracy 
calculation is shown below: (Table 3 shows a comparison of peak accuracy values 
of test functions and the 1st 7 composite functions) 

                              
#

1

( ) ( )

#

glo peaks
i

i

f peak f X
peak accuracy

glo peaks=

−
= ∑                       (2) 

Table 2. Average Number of Peaks found for Test Functions and Comparisons with other 
Algorithms 

Function ε r sp CIWO CMA-
ES 

CDE SDE FER 
PSO 

SPSO 

f1 0.05 0.5 150 1 1 1 1 0.72 0.48 

f2 0.05 0.5 150 1 1 1 1 1 0.44 

f3 0.000001 0.01 175 5 4.92 3.84 4.72 4.84 4.88 

f4 0.000001 0.01 150 1 1 0.72 1 1 1 

f5 0.000001 0.01 175 5 4.88 3.96 4.6 5 4.92 

f6 0.000001 0.01 150 1 1 0.6 1 1 1 

f7 0.000001 0.5 200 1.6 1.6 0.04 2 1.96 0.08 

f8 0.005 0.5 160 3.88 3.72 0.32 3.72 3.68 0.84 

CF1 of [12] 0.5 1 200 1.3 1.08 0 1.8 1.08 0 

CF2 of [12] 0.5 1 300 1 1.52 1.2 1.2 2 0 

CF4 of [12] 0.5 1 375 3 0 0 0 0 0 

CF5 of [12] 0.5 1 200 2 1.12 1.12 1.32 2 0 

CF7 of [12] 0.5 1 200 1 0 0 1.8 1.52 0 

CF8 of [12] 0.5 1 250 2 0 0 1.4 1.5 0 

CF10 of [12] 0.5 1 300 2.5 0 0 1.1 1.1 0 

CF13 of [12] 0.5 1 350 1 0 0 0.9 0.3 0 

CF15 of [12] 0.5 1 375 2 0 0 1.6 1.2 0 
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Table 3. Peak accuracy of simple test functions and first seven composite functions 

Function r CIWO CMA-ES CDE SDE FERPSO SPSO 

f1 0.5 5.32 e-15 9.63e-09 9.46e-08 1.23e-08 5.24e-02 8.74e-02 

f2 0.5 7.23 e-11 1.87e-07 8.76e-06 3.43e-07 9.65e-04 9.45e-02 

f3 0.01 8.65e-11 9.56e-08 7.43e-05 9.53e-07 5.65e-07 3.12e-07 

f4 0.01 1.65 e-12 8.54e-09 9.43e-06 4.03e-09 8.34e-09 2.16e-09 

f5 0.01 3.92 e-10 4.36e-07 5.39e-05 8.27e-07 5.45e-09 9.58e-08 

f6 0.01 6.47 e-09 2.89e-07 8.97e-05 4.51e-07 7.41e-07 2.98e-07 

f7 0.5 1.26 e-06 2.63e-05 3.42e-04 5.33e-08 7.38e-08 3.58e-04 

f8 0.5 2.72 e-05 6.52e-04 4.27e-02 8.57e-04 8.69e-04 5.21e-02 

CF1of [12] 1 32.45 35.48 75.68 35.48 30.96 1.05e+02 

CF2 of [12] 1 26.58 32.16 38.92 32.53 25.54 1.10e+02 

CF4 of [12] 1 1.2e+02 1.89e+02 1.60e+021.39e+02 1.23e+02 2.49e+02 

CF5 of [12] 1 30.71 42.56 45.62 30.55 39.52 1.07e+02 

CF7 of [12] 1 27.64 59.87 17.32 25.66 32.62 1.47e+02 

5   Conclusions 

In this paper we proposed a multimodal evolutionary optimization technique that 
summarizes concepts powerful modern optimizing technique IWO and a selection 
technique of niching called crowding. The crowding IWO algorithm was tested for 
the optimization of fifteen benchmark functions (including five composite 
functions). To justify its development, results were directly compared with nine 
state-of-the-art evolutionary multi-modal optimizers based on the performance 
metrics like average number of peaks found and peak accuracy. The results of our 
experimental studies suggest that crowding IWO can provide a statistically 
superior and more consistent performance than the other standard multimodal 
optimization algorithms. 
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