
Implementing Agents Capable of Dynamic

Negotiation

Marcin Paprzycki1, Ajith Abraham1, Amalia P̂ırvănescu2, and Costin Bădică3

1 Oklahoma State University, Computer Science Department
Tulsa, OK, 74106, USA

marcin@cs.okstate.edu, ajith.abraham@ieee.org
2 S.C.Softexpert SRL, Craiova, Romania

amalia pirvanescu@yahoo.com
3 Software Engineering Department, University of Craiova

Bvd.Decebal 107, Craiova, 200440, Romania
c badica@hotmail.com

Abstract. Support for negotiation is one of the more important research
issues when developing agent systems utilized in e-commerce. While, de-
pending on the type of the transaction, different negotiation procedures
need to be utilized, only very few proposed frameworks are generic and
flexible enough to handle multiple scenarios. This paper presents nego-
tiating agents, which can change their negotiation protocol and strategy
through dynamic loading of reasoning models. We also describe details
of the initial implementation of such a system.

1 Introduction

The advent of Internet and the rapid development of e-commerce, gave a boost
to the agent technology research. While there exist many definitions of agents
([10]), for the purpose of this paper we will define them as: encapsulated com-
puter programs, situated in an environment, and capable of flexible, autonomous
actions focused on meeting their design objectives ([27]). For such agents, e-
commerce is considered to be one of the paradigmatic application areas. The
total number of e-commerce WWW sites was recently estimated at more than
150,000 ([11]) with revenue projections up to $1.5 trillion in 2004 [1, 9]. In the
context of e-commerce, automated trading using agents are expected to reduce
transaction costs (thus reducing the prices and increasing the revenue). Our re-
search indicates that most currently existing automated trading systems are not
robust enough to become the foundation of the next generation of e-commerce.
For example, the Kasbah Trading System ([5]) supports buying and selling but
does not include auctions; SILKROAD ([20]), FENAs ([17]) and Inter-Market
([18]) exist as ”frameworks” but lack an implementation (which is typical for
most agent systems in general ([21, 22]). This paper is a follow up to ([23, 24])
where we proposed a system in which agents can operate according to different
business models including auctions, reverse auctions, trading, e-sales etc. This
was to be made possible by constructing agents out of independently pluggable,

2

loaded remotely on-demand modules. In [24] we have described how this system
can be implemented using JADE 2.6 agent platform. Here, we will first, out-
line the rationale and the design of the proposed system and follow with the
description of the implementation of the demonstrator system.

2 Negotiations

Negotiation is a method for coordination and conflict resolution, where conflict
is understood broadly as any form of goal disparity (for more details see, [23]).
As indicated above, it is expected that, on the Internet, autonomous agents will
negotiate on behalf of customers. Overall, research on agent-negotiations can be
divided into approaches based on game theory and artificial intelligence. Game-

theoretic approaches are directed towards developing optimization algorithms
(e.g. [29, 2]) and take into account both cooperative and non-cooperative agents.
In the case of cooperative agents, the problem space is divided between agents
and when a conflict arises, the team members negotiate to find a resolution
[26]. In non-cooperative situation, theories like Nash equilibrium are applied to
the bargaining problem to find the optimum solution. Their main drawback of
game-theoretical approaches is that they involve highly abstract models that as-
sume unrealistic properties of the game: e.g. agents that have the entire common
knowledge and unbounded rationality, unlimited computation power and indefi-
nite negotiation time. While impossible to implement they helped develop other
theories, i.e. techniques for agents participating in auctions e.g. Dutch, English,
Vickery, etc. Artificial Intelligence based approaches utilize trading heuristics
(decision trees, Q-learning and evolutionary algorithms etc.) for different mar-
ket mechanisms (e.g. [5, 25]). They focus on the negotiation process rather than
the outcome of the negotiation. The agents used are presumed to be adapt-
able, realistic and sociable. When considering the practical aspects of designing
multi-agent negotiations, the negotiation protocol, negotiation objects and the
reasoning models ([16]) need to be taken into account.

1. Negotiation protocol consists of a set of rules that govern the interaction
among agents. Some examples of the rules are: permissible types of partici-
pants: negotiators, third parties; negotiation states: accepting bids, negotia-
tion closed; valid actions of the participant in particular states, etc.

2. Negotiation objects are ranges of issues over which agreement must be reached.

3. Reasoning model is the apparatus that participants employ in order to achieve
their negotiation objectives. For instance, it is a mechanism by which the
next counter-offer is calculated. Some of the strategies developed are argu-
mentation, persuasion and heuristics-based. Obviously, the selection of the
reasoning model depends on both the protocol and the negotiation object
[25].

3

3 System Design

It is often suggested that, communicating mobile agent teams can handle si-
multaneously very large amounts of information whilst disburdening users who
can be off-line, while agents continue working for them [28]. One of the typical
scenarios used here is the case of mobile agents carrying out automated nego-
tiations. Unfortunately, mobility comes at a cost. Mobile agents can either be
lightweight, or loaded with substantial “reasoning power. To avoid this problem
we propose to dynamically load appropriate operational modules into agents that
are to be involved in negotiations. In this way, only lightweight “agent-skeletons
migrate between sites and only modules required for negotiations are loaded (for
a description of a somewhat similar system, see [18]).

More precisely, an agent in our system is composed of a static “core” and
three pluggable components (for more details see [23]), as depicted in Figure 1).

Fig. 1. An agent, its static core, and its plug-in components

1. Communication module: responsible for communication between the agents.
The Agent Communication Language (ACL) a FIPA standard for agent
communication by FIPA is used here [8]. This module is static one (even
though this could be an interesting research topic, in this note we are not
concerned with dynamically loading communication modules).

2. Protocol module: contains general rules of negotiation; when an agent initi-
ates negotiation it finds out which negotiation protocol has to be used and
dynamically loads the correct module (from the user’s local machine or any
agent server, e.g. the nearest one; observe that negotiation protocols can be
standardized as it is the strategy that will have to be kept secret).

3. Strategy module: contains reasoning policies, which are a set of goals, ac-
tions and action rules (triggers). To decide which reasoning model to use,
the agent uses the mapping table similar to Table 1 below, containing infor-
mation about potential sellers (or buyers), resulting from past transactions

4

and/or additional information sources. Agent carries only information about
“sites most often negotiated with. The remaining information as well as indi-
vidual strategy modules, will have to be stored on a trusted server to prevent
problems caused by users machine being off-line.

Table 1. Sample matchmaking table for negotiation initialization

SELLER PRODUCT PROTOCOL STRATEGY SUCCESS RATE

1 Used Cars Offer-Counter Offer Tit-For-Tat 0

2 Used Cars Offer-Counter Offer Tit-For-Tat 60

3 Used Appliances Argumentation Persuade/Critique 90

4 Used Appliances Auction Heuristics 70

5 Travel Package Offer-Counter Offer
Boulware + Time
dependent

40

6 Travel Package Bidding

7 Air Tickets Auction

4 Current Implementation

Before we proceed, we have to stress that our objective was to implement dynam-
ically loaded protocol and strategy modules working within mobile agents. At
this stage our intention was not developing and/or implementing sophisticated
reasoning algorithms (which are nowadays object of an extensive research[25,
16, 3]). Therefore we have implemented very simple bargaining process for car
buying and selling (however, for all practical purposes, this latter choice was
inconsequential for our implementation).

Recently, Grifell et al. ([12–14]) have worked on designing plug-in modules
and rule-based negotiation. We have taken ideas and build upon them so that
new functionality can be added on the fly with need of reconfiguration but
no recompilation. An implementation of our system utilizes Java’s dynamically
loaded classes. In particular, each required functionality is encapsulated in a
Java class and an agent loads the required module locally or remotely by using
reflection and Java’s dynamic class loading.

The initial implementation of the proposed system utilizes the JADE agent
platform ([15]), which is an open-source, fully FIPA compliant environment.
Furthermore, recent experiments showed, that JADE scales well and therefore,
we expect that in the near future we will be able to perform experiments with
hundreds agents. Finally, JADE has large and vigorous user community and
is being actively developed, with new versions released approximately every 6
month. This latter fact had also some unpleasant consequences. We started im-
plementing our system using JADE 2.61 (see [24] for details) and with the new
release we decided to port it to JADE 3.1. This is when we experienced problems
caused by changes in the JADE API. We were forced to modify our code at the
class level and at the method level.

5

The most important modifications at the class level were dealing with agent
ontologies. Classes of package jade.onto have been removed and their functional-
ity has been encapsulated into classes of the jade.content.onto package (SlotDe-

scriptor, Schema, etc.). The addition of roles to ontology items has been replaced
with the ConceptSchema class that offers similar possibilities (field addition for
example). The registration of an ontology is now different, as the method reg-

isterOntology migrated from the Ontology class to the ContentManager class.
The DeafultOntology class has been removed and the Ontology class has been
transformed from an interface into a concrete class.

At the method level, the method to set a MessageTemplate in an agent be-
havior has been split into three methods to set each behavior element separately:
DataStore, MessageTemplate and Deadline. These can be seen in the DutchAuc-

tionInitiator and EnglishAuctionInitiator classes. Class Preferences, that rep-
resents agent ontology, must now implement the Concept interface from the
jade.content.onto package. In the communication module the codecs have been
changed. A codec is now registered in a different way. In the original implementa-
tion we have used the class SL0Codec, which doesn’t exist anymore. Now there is
only the Codec class that needs a parameter to determine the type of codec used
by the message content. And finally, instead of the already deprecated methods
in the original implementation extractMessageContent and fillMessageContent

we now use extractPreferences and fillPreferences.

4.1 Agents and Agent Interactions; an Overview

In our initial implementation a “personal agent is responsible for creating buyer
and seller agents (instances of negotiator agents). In Figure 2 we present the GUI
interface to the personal agent. To initiate the process the required fields have to
be entered (e.g. price and protocol). The Start Negotiation menu item initiates
negotiations. Let us present the process from the point of view of a seller agent
which has been created and enters a marketplace (we omit all details related to
the organization of the marketplace, or a Negotiation Server environment where
the negotiations take place). Seller agent tries to find prospective buyers by
searching the Directory Facilitator (DF) for all agents of the Type = buyer. In
the next step, the seller agent determines which negotiation protocol is favored
by the majority of buyer agents (at this stage we assume a single seller agent;
it is however possible that a number of agents can work together as a team; for
instance, the seller agent could clone itself for each encountered protocol). Once
the preferred protocol is determined, the seller agent loads the corresponding
protocol module as well as an appropriate strategy module and initiates the
negotiation process (in the case of multiple protocols, each seller agent clone
loads its negotiation protocol and a corresponding strategy protocol). Buyer
agents respond and the negotiation process continues until a buyer is found or
no buyers are found (the case of multiple agents, the final result of negotiation
would have to be further meta-negotiated between the seller agent clones).

6

Fig. 2. GUI interface of the personal agent

4.2 Negotiation Protocols

We have restricted our attention to auctions and implemented English and
Dutch protocols as defined by FIPA. In particular, we have created a myFi-

paEnglishAuctionInitiatorBehavior subclass and a myFipaDutchAuctionInitia-

torBehaviour subclass of the EnglishAuctionInitiator class and the DutchAuc-

tionInitiator classes in the jade.proto package. Let us now briefly summarize both
auction protocols.

A. FIPA English Auction Interaction Protocol: the auctioneer seeks to find the
market price of a good by initially proposing a price below that of the ex-
pected market value and then gradually raising it. Each time the price is
announced, the auctioneer waits to see if any buyers will signal their will-
ingness to pay the proposed price. As soon as one buyer indicates that it
will accept the price, the auctioneer issues a new call for bids with a higher
price. The auction continues until no buyers are prepared to pay the proposed
price, when the auction ends. Commodity is sold only if the last accepted
price exceeds the auctioneer’s (privately known) reservation price.

B. FIPA Dutch Auction Interaction Protocol: the auctioneer attempts to find
the market price for a good by starting bidding at a price higher than the
expected market value, then progressively reducing the price until one of
the buyers accepts the price. The rate of reduction of the price is up to the
auctioneer and usually a reserve minimal price is involved.

We have also considered a situation when there are two or more buyers
offering the same, winning price. In this case, the actual winner is the first buyer
who submitted a winning bid.

7

4.3 Negotiation strategies

Since the aim of our work was to test-implement an agent system, and not to deal
with specific negotiation mechanisms, we have implemented two very simple ne-
gotiation strategies. The seller increments the price by 10 in, what we named, the
Heuristics Reasoning module and by 20 in, what we named, the Argumentation

Reasoning module (obviously, these names only indicate negotiation strategies
that could have been used here). Currently we load these two modules randomly
as a proof of concept.

5 Proof of Concept Implementation

5.1 Experimental Setup

In order to demonstrate the dynamic loading of modules, we initialized JADE
with two containers: the Main container and the container attached to it called
Container-1. The personal agent resides in the Main container while the nego-
tiating agents, upon reception of preferences from the personal agent, migrate
to Container-1. The Container-1 may (but does not have to) exist on a remote
machine and represents the marketplace. As can be seen in Figure 3 the name
of host is ahile and it is running Windows XP. This setup can be seen from the
screen shot presented as Figure 3.

Fig. 3. Screen capture of the Remote Management Agent GUI for JADE set-up with
two containers

To run the system the following steps are necessary:

1. Start JADE and create the personal agent.
2. Create a satellite container named Container-1 that acts as the marketplace.

8

Fig. 4. Screen capture of the content of an ACL message

3. When a screen with default values appears (and the default mode is buyer),
create multiple buyer agents.

4. Start a sniffer agent in order to monitor the exchange of transaction mes-
sages.

5. Initiate the sniffer for all the agents created thus far.
6. Create a seller agent and enter a reserved price.
7. Initiate the sniffer to include the seller agent.
8. When auction is completed, the messages exchanged by the buyers and the

seller are visible in the sniffer agent GUI (Figures 5, 6, 7 and 8). Note that it
is possible to check the content of a specific ACL message by right-clicking
on an appropriate message-arrow (Figure 4).

5.2 Running the System

Let us now present samples of system operation for both English and Dutch
auctions. As indicated above, when two or more buyers have the same reserved
price (conflict) the seller will accept the first buyer who submitted the winning
bid. For each experiment we present the sequence of messages exchanged between
the seller and buyers captured with the help of the sniffer agent.

In the English auction, the seller starts with its reserved price (indicated by
the user in the Personal Agent GUI) and sends CFP messages to all buyers, no
matter their protocol. Only the buyers with the same protocol will reply with

9

Fig. 5. English auction without conflict

REFUSE or PROPOSE messages. The seller increases the proposed price and
responds with CFP messages only to these buyers that have sent a PROPOSE
message. The process is repeated, until the seller receives no proposals. In this
case, the buyer that wins the auction is the first buyer that submitted a proposal
in the previous step. That agent receives an INFORM message from the seller.
We performed two experiments with the English auction protocol: without and
with conflict. In the first experiment we created two buyers having the reserved
prices 1000 and 1020; then we create a seller with the reserved price 980. The
buyer that wins the auction is the one with the reserved price 1020. The results
are presented in Figure 5.

Fig. 6. English auction with conflict

10

In the second experiment (with conflict) we created three buyers having the
reserved prices 1000, 1000 and 980; then we create a seller with the reserved
price 960. The buyer that wins the auction is one with the reserved price 1000.
The results are presented in Figure 6.

Fig. 7. Dutch auction without conflict

In Dutch auction, the seller begins with a price higher than its reserved price
and receives PROPOSE messages from the buyers; if the reserved price of the
buyer is smaller that the price proposed by the seller, the content of the propose
message is 0; the process is repeated until the first PROPOSE message with a
content different from 0 is received. When two or more buyers send a PROPOSE
message with the content different from 0 at the same time, the first buyer that
sent the message wins the auction. We performed two experiments with the
Dutch auction protocol: without and with conflict. In the first experiment we
created two buyers having the reserved prices 1000 and 1010; then we create a
seller with the reserved price 870. The buyer that wins the auction is one with
the reserved price 1010. The results are presented in Figure 7.

In the second experiment we created three buyers having the reserved prices
1000, 1000 and 980; we created a seller with the reserved price 860. The buyer
that wins the auction is one of the buyers with the reserved price 1000. The
results are presented in Figure 8.

6 Concluding remarks

In this paper we presented an agent framework capable of dynamically loading
protocol and strategy modules. negotiations. We have also discussed details of
a JADE 3.1 based implementation of an actual demonstrator system. We have
shown that it is possible to facilitate adaptive behavior of the system within
JADE environment. Obviously, the implemented system is highly simplified, as
our goal was to perform an initial assessment of the feasibility of our approach. In

11

Fig. 8. Dutch auction with conflict

the future we plan to continue developing its capabilities in two main directions.
The first one is associated with agent technology itself. Here we plan to, among
others, increase the number of agents and computers; test the above-mentioned
possibility of utilizing agent cloning; test the assumption that sending modules
over the network improves performance of the system. As a step in this direction
we have developed the agent-based e-commerce skeleton [6] within which we will
now introduce our adaptive negotiating agents. The second is associated with
the negotiation process itself. There are two paths to follow here. We would like
to add more auction types to our system (as specified by the FIPA standards),
like Vickrey auctions and experiment with buyers having various preferences in
the product types and their specific features. Also of course, we have to take the
existing results and actually implement them in our agents and use such agents
in more realistic e-commerce scenarios.

References

1. Andersen Consulting. http://www.andersen.com. (accessed on September 07, 2004)
2. AuctionBot. http://auction.eecs.umich.edu. (accessed on September 07, 2004)
3. Beer, A., d’Inverno, M., Luck, P., Jennings, P.: Negotiation in Multi-Agent Systems,

Knowledge Engineering Review, 14(3), (1999) 285–289.
4. Benameur, D., Chaib-draa, A., Kropf, H.: Multi-item Auctions for Automatic Ne-

gotiation, Journal of Information and Software Technology, 44/5, (2002) 291–301.
5. Chavez, V., Maes, P.: Kasbah: An Agent Marketplace for Buying and Selling Goods,

Proc. of the First Int. Conf. on the Practical Application of Intelligent Agents and
Multi-Agent Technology, London, UK, 1996.

6. Chmiel, K., Czech, D., Paprzycki, M.: Agent Technology in Modeling E-commerce
Processes; Sample Implementation, Proc. of the MISSI-2004 Conference, Szklarska
Poreba, Poland, 2004, to appear.

7. Chmiel, K., Tomiak, D., Gawinecki, M., Karczmarek, P., Szymczak, M., Paprzycki,
M.: Testing the Efficiency of JADE Agent Platform, Proc. of the 3rd Int.Symp.on
Parallel and Distributed Computing, Cork, Ireland, 2004, to appear

12

8. http://www.fipa.org. (accessed on September 07, 2004)
9. Forrester. http://www.forrester.com. (accessed on September 07, 2004)
10. Galant, V., Tyburcy, J.: Intelligent Software Agent (in Polish), in: A. Baborski

(ed.), Knowledge Acquisition in Databases, Wroclaw Univ. of Economics, (2001).
11. Gartner. http://www.gartner.com. (accessed on September 07, 2004)
12. Tu, M.T., Griffel, F., Lamersdorf, W.: Integration of Intelligentand Mobile Agents

for E-commerce. In St. Kirn and M. Petsch (Eds.), Workshop Intelligente Soft-
wareagenten und betriebswirtschaftliche Anwendungsszenarien, TU Ilmenau, FG
Wirtschaftsinformatik 2. Arbeitsbericht, (1999).

13. Griffel, F., Lamersdorf, W., Merz, M.: A plug-in architecture for providing dynamic
negotiation capabilities for mobile agents, (1998).

14. Griffel, F., Lamersdorf, W., Merz, M.: Interaction-Oriented Rule Management for
mobile agent applications, (1999).

15. http://jade.cselt.it. (accessed on September 07, 2004)
16. Jennings, P., Parsons, S.: On Argumentation-Based Negotiation, (1998).
17. Kowalczyk, R.: On Fuzzy e-Negotiation Agents: Autonomous negotiation with

incomplete and imprecise information, In: Proc.DEXA’2000, London, UK, (2000)
1034–1038.

18. Kowalczyk, R., Franczyk, B., Speck, A.: Inter-Market, towards intelligent mobile
agent E-Market places, Ninth Annual IEEE Int. Conf. and Workshop on the Engi-
neering of Computer-Based Systems (ECBS 2002), Lund, Sweden (2002) 268–276.

19. Sandholm, T. and Lesser, V.: Coalitions among Computationally Bounded Agents.
Artificial Intelligence 94(1), (1997) 99–137.

20. Michael, S.: Design of Roles and Protocols for Electronic Negotiations, Electronic

Commerce Research Journal, Vol.1 No.3 (2001) 335–353.
21. Nwana, H., Ndumu, D.: A Perspective on Software Agents Research, The Knowl-

edge Engineering Review, 14(2), (1999) 1–18.
22. Paprzycki, M., Abraham, A.: Agent Systems Today; Methodological Considera-

tions, Proc. of 2003 Int.Conf. on Management of e-Commerce and e-Government,
Jangxi Science and Technology Press, Nanchang, China, (2003) 416–421.

23. Parakh, G., Paprzycki, M., Nistor, C.E.: Dynamically Loaded Reasoning Mod-
els in Negotiating Agents, Proceedings of the 3rd European E-COMM-LINE 2002
Conference, Bucharest, Romania, (2002). 199–203.

24. Parakh, G., Rani, S., Paprzycki, M., Abraham, A., Thomas, J.: Agents Capable of
Dynamic Negotiations, in: M. Paprzycki (ed.), Electronic Commerce; Research and
Development, ACTEN Press, Wejherowo, Poland, (2003) 113–120.

25. Sierra C., Faratin P. and Jennings N. R.: A Service-Oriented Negotiation Model
between Autonomous Agents, Proc. 8th European Workshop on Modeling Au-
tonomous Agents in a Multi-Agent World (MAAMAW-97), Ronneby, Sweden,
(1997) 17–35.

26. Qiu, X., Tambe, V: Flexible Negotiation in Teamwork, Proc. of the third annual

conference on Autonomous Agents, Seattle, United States, (1999) 400–401.
27. Wooldridge, M.: Agent-based software engineering, IEEE Trans. on Software En-

gineering, 144(1) (1997) 26–37.
28. Wooldridge, M.: An Introduction to MultiAgent Systems, John Wiley & Sons,

(2002).
29. Zlotkin, G., Rosenschein, J.S.: Cooperation and conflict resolution via negotia-

tion among autonomous agents in non-cooperative domains. IEEE Transactions on

Systems, Man, and Cybernetics, 21(6), (1991) 1317–1324.

