
A Novel Process Network Model for
Interacting Context-Aware Web Services

Xiuguo Zhang, Hongbo Liu, and Ajith Abraham, Senior Member, IEEE

Abstract—Context-aware web services have been attracting significant attention as an important approach for improving the usability

of web services. In this paper, we explore a novel approach to model dynamic behaviors of interacting context-aware web services,

aiming to effectively process and take advantage of contexts and realize behavior adaptation of web services and further to facilitate

the development of context-aware application of web services. We present an interaction model of context-aware web services based

on context-aware process network (CAPN), which is a data-flow and channel-based model of cooperative computation. The CAPN is

extended to context-aware web service network by introducing a kind of sensor processes, which is used to catch contextual data from

external environment. Through modeling the register link’s behaviors, we present how a web service can respond to its context

changes dynamically. The formal behavior semantics of our model is described by calculus of communicating systems process

algebra. The behavior adaptation and context awareness in our model are discussed. An eXtensible Markup Language-formatted

service behavior description language named BML4WS is designed to describe behaviors and behavior adaptation of interacting

context-aware web services. Finally, an application case is demonstrated to illustrate the proposed model how to adapt context

changes and describe service behaviors and their changes.

Index Terms—Context-aware web service, service behavior, CCS process algebra, CAPN, service interaction

Ç

1 INTRODUCTION

CONTEXT-AWARE web service can help its system to
understand situational context and share that context

with other services. “Context” mainly refers to the
information about clients and their environment that
may be used by web services to provide clients with a
customized and personalized behavior [1], [2]. Context
information includes any additional information, for exam-
ple, a consumer’s name, current location and address, type
of client device, and so on, which can be used to improve
the behavior of a service in a situation [3], [4], [5], [6].
Without such additional information, the service would be
operable as normal but with context information, which is
arguable that the service can operate better or more
appropriately [7], [8], [9], [10]. Context-awareness is
considered as a kind of ability of the application to discover
and take advantage of context information. In context-
aware application of web services [11], [12], a web service
can adapt its operations according to its contexts, that is,
service behaviors change as the context changes. To
respond to context changes, a context-aware web service
has to accommodate for a variety of context types and tune
their behaviors dynamically with the changing contexts.
Context-aware web services have been attracting significant
attention as an important approach to improving the
usability of web services [13], [14], [15], [16], [17], [18], [19].

In this paper, we focus on the behavior of interacting
context-aware web services and automatic behavior adap-
tation of web services to context changes. We tackle the
problem of how contexts are processed and how they affect
service behaviors dynamically. A novel approach is
proposed to model dynamic behaviors of interacting
context-aware web services, aiming to effectively process
and take advantage of contexts and realize behavior
adaptation of web services and further to facilitate the
development of context-aware application of web services.
We present an interaction model of context-aware web
services based on a formal model, context-aware process
network (CAPN) [20], [21], which is a data-flow and
channel-based model of cooperative computation. The
CAPN is extended to a context-aware web service network
by adding a kind of additional sensor processes, which is
used to catch contextual data from external environment. In
CAPN, the application data and context data are not
distinctly separated, while in a context-aware web service
network, the separation of application data and context data
is enforced by separating respective reading and writing
semantics. This separation helps us to realize behavior
adaptation of context-aware web service. We use unidirec-
tional register link of CAPN to carry context information of
web services. Through modeling the register link’s beha-
viors, we present how the web service’s behavior dynami-
cally changes as context changes. Using the CAPN, we aim
to reduce unanticipated circumstances and uncooperative
cases of interacting web services.

This paper is organized as follows: Related works are
presented in Section 2. Section 3 describes the service
interaction model of context-aware web service network.
Section 4 presents behavior semantics of context-aware web
service network. Section 5 introduces the realization of

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. X, XXXXXXX 2013 1

. X. Zhang and H. Liu are with the School of Information Science and
Technology, Dalian Maritime University, Dalian 116026, China.
E-mail: {zhangxg, lhb}@dlmu.edu.cn.

. A. Abraham is with the Machine Intelligence Research Labs, Seattle, WA
98071, and IT4Innovations, VSB-Technical University of Ostrava, Czech
Republic. E-mail: ajith.abraham@ieee.org.

Manuscript received 9 May 2011; revised 6 Nov. 2011; accepted 23 Jan. 2012;
published online 6 Feb. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2011-05-0042.
Digital Object Identifier no. 10.1109/TSC.2012.6.

1939-1374/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

behavior adaptation and context awareness in context-
aware web service network. Section 6 provides an XML-
formatted service behavior description language for de-
scribing behaviors and behavior adaptation of interacting
context-aware web services. Section 7 presents a case to
show how the application can adapt to context changes and
how to describe service behaviors and their changes.
Section 8 draws conclusions and future work.

2 RELATED WORKS

2.1 Context-Aware Web Service

Recently, different technologies, approaches, and frame-
works for context-aware web services and their application
have been researched [1], [4], [22], [23], [24], [25], [26], [27].
A context-aware web service is a smart web service that can
understand situational context and can share that context
with other services [4], [28]. In this paper, we are mainly
concerned about dynamic behaviors of interacting web
services. We consider a web service as context aware if it
uses context to provide customized and personalized
behaviors during its interaction with other services.

The definition of context depends on the purpose of the
application. For example, in its broad sense in [29], context
is defined as any information that can be used to
characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant or the interaction
between a user and an application, including the user and
applications themselves. For web services [5], context is
defined as the information characterizing the situation in
which the services are being executed. In this paper, we
consider a context as any information that can be used to
characterize the situation of interactions among web
services, including state of interaction environment, state
of entities in interaction environment such as user state and
web service state.

Context types also differ form situation to situation. For
example, Keidl and Kemper [1] presented several context
types including the consumer’s location, client’s devices,
information about the consumer invoking the web service,
for example, name and e-mail address, connection prefer-
ences, which allows to specify properties of the connections
to web services. In [29], three categories of context are
distinguished: physical (location, time, etc.), computing
(terminal form factor, battery life, available bandwidth,
accessible computing facilities, etc.), and user context
(current activity, schedule, intent, etc.). In this paper, we
use three kinds of contexts to characterize the situation of
service interactions, including interaction environment
context (network bandwidth, operating system, client’s
devices, etc.), user context (user preference, user location,
etc.), and service context (business restriction, service
availability, execution time, success rate, etc.).

2.2 Web Service Behavior Modeling

At present, the main methods of modeling web service
behaviors are the Petri net-based method [30], [31], the
process algebra-based method [32], [33], and the finite-state
machine-based method [34]. These methods are formal and
commonly used to describe and verify web service beha-
viors. For example, the Petri net-based behavior modeling
method focus on describing behavior process inside web

service and is fit to verify correctness of composite service
behaviors. Process algebra-based behavior modeling meth-
od focus on describing behavior process outside web service
and is fit to verify interaction correctness among web
services. The finite-state machine-based method describes
service behaviors from the view of state transition and
message passing, but it is difficult to describe behaviors of
sophisticated process using a finite-state machine.

In this paper, we use the CAPN to model dynamic
behaviors of interacting context-aware web services. We
think that the CAPN is more fit for modeling interacting
context-aware web services in several aspects, including its
parallelism and communication mechanism, compositional
property, executable property, and context-awareness
semantics.

2.3 Behavior Adaptation of Context-Aware Web
Services

Adaptation is the capability to provide different versions of
a service or different presentations of a document, to suite
the needs of the user, of the environment, of the equipment,
etc., [35]. In this paper, we consider behavior adaptation of a
context-aware web service as its capability to provide
different versions of customized and personalized beha-
viors for meeting the needs of context changes.

Chaari and Celentano [36] categorized context adapta-
tion into three categories: services adaptation, content
adaptation, and UI adaptation. Here, services refer to the
services of the application, content is the exchanged data
with the user, and UI is the visualization. They developed
a platform that makes the services, data and the user
interface of applications adaptable to different context
situations.

Jacob and Steglich [25] define the notion of context
functions as a statement about the relative influence of a
context parameter on the behavior of the respective service.
Context functions can be a mathematical function or a
regular expression and can be easily adapted to directly
affect the context-aware service behavior.

Zhou et al. [26] proposed the concept of context-aware
pervasive service composition (CAPSC) and design a
CAPSC architecture by taking into account context-aware
peer coordination, context-aware process service adapta-
tion, and context-aware utility service adaptation.

Hervás and Bravo [27] exploited semantics to apply
context in runtime adaptation. They implement mechan-
isms to support the dynamic behavior of the users and
their surroundings, including techniques to adapt context
model to their future needs, to maintain the context
information at runtime, and to be interoperable with
external context models.

To summarize, different behavior adaptation approaches
tackle the problem of behavior adaptation in different
manners. In this paper, based on the CAPN model, we
present our own context processing and behavior adapta-
tion approaches. Similar to services adaptation in [36], we
also provide different behavior versions for a context-aware
web service, but we provide a register link based behavior
adaptation strategy and a more detailed version selection
approach. We adopt context influence functions to denote
the influence of contexts on web service. The influence

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. X, XXXXXXX 2013

function in this work is similar to context function in [25]

but their context function is not used for behavior version
selection of context-aware web service. Also, our behavior

adaptation strategy is different from [25] because we

provide a unified and formatted influence function for
every context to calculate the rank of a behavior version, but

Jacob and Steglich [25] do not. Using the CAPN to model

context-aware web service interaction, we can present an

explicit formal semantic for interacting context-aware web
service that facilitates the development of context-aware

application of web services.

3 CONTEXT-AWARE WEB SERVICE NETWORK:
A SERVICE INTERACTION MODEL

Service interaction describes how services can communicate

with each other at the message level. In this section, we
describe an interaction model of context-aware web

services. We name this interaction model as a context-

aware web service network. Its design idea comes from a

data-flow and channel-based model of cooperative compu-
tation, i.e., CAPN [20], [21]. Next, we briefly introduce the

model of the CAPN.

3.1 CAPN

Kahn process network (KPN) [20] is a model of computa-

tion based on data flow and has been widely used in many

areas [37], [38], [39]. A strong aspect of KPNs is that they
make (task-level) parallelism and communication in an

application explicit, which means that they are very suitable

for execution on distributed architectures. In KPN, nodes

represent computations (concurrent processes), and arcs
represent totally ordered sequences of data (commonly

called tokens). Concurrent processes communicate with

each other using FIFO channels that are unidirectional

unbounded queues of data tokens between two processes.
Read actions from these FIFOs block until at least one data

item (or token) becomes available. The FIFOs have

unbounded size, so writing actions are nonblocking. Read-

ing actions from the FIFOs are destructive, which means
that a token can only be read once. KPN are determinate,

i.e., given an input, the output result of its computation is

independent of execution order. This allows us to execute
the network in parallel, as well as sequentially. KPNs

implement asynchronous communication but synchronous

coordination. Geilen and Basten [40] presented an opera-

tional semantics for the KPN.
To facilitate asynchronous coordination, van Dijk et al.

[21] extended the Kahn model of computations to the CAPN

with a simple indeterminate construct, i.e., a unidirectional

nonblocking register link (REG), which has destructive and

replicative behavior. They defined the behavior of a REG
link as follows: Writing to a full register overwrites a

previously written value. Reading from a register returns

the last received value; a value can be returned multiple

times. Because the context information in REG as control
information may decide the output of a process, i.e., given

an input, the output result of its computation changes as

contexts change, so CAPN is indeterminate.

3.2 Context-Aware Web Service Network

Several advantages of CAPN make it adequate to model
service interactions:

1. parallelism and communication mechanism in
CAPNs, which enable distributed service interaction
on Internet;

2. CAPNs are compositional, which corresponds to the
possibility to build bigger behaviors from small ones;

3. CAPN can be executed, which ensures an execu-
table service interaction environment for actual
application; and

4. context-awareness semantics in CAPNs accords to
context-awareness semantics of web services.

So, we use the CAPN to model interaction of context-aware
web services.

Fig. 1 shows the interaction model of context-aware web
services, i.e., context-aware web service network. A web
service is modeled as a computing process of the CAPN.
Web services communicate with each other using FIFO
channels. The main modeling elements of a context-aware
web service network are service, sensor, input port
(denoted as a small white circle), output port (denoted as
a small gray circle), FIFO-buffered channels, register link,
and trace. In this model, to simplify the process of context
capturing, we add a sensor element that is a kind of
additional CAPN processes and only used to get contexts
from environment and send them to web services. The
normal CAPN process, i.e., computing process is used to
deal with application data among web services.

3.2.1 Modeling Web Service and Sensor Service

In this model, we model a web service as a computing
process of the CAPN. A web service is described as a service
interface that has a set of service operations. A service
operation consists of a number of input and output ports
through which the input and output parameters of service
operations are passed. We model a sensor service as an
additional process. For convenience, a sensor service is
defined as a kind of specific web services, similar to a web
service in its interface, operation, input and output ports,
but different from a web service in its behavior. A sensor
service can only link to register links and cannot link to FIFO
channels, while a web service does not have this limitation.

ZHANG ET AL.: A NOVEL PROCESS NETWORK MODEL FOR INTERACTING CONTEXT-AWARE WEB SERVICES 3

Fig. 1. Context-aware web service network.

3.2.2 Modeling Behaviors of FIFO-Buffered Channels

A web service communicates with others using FIFO-
buffered channels that are unbounded queues of data
tokens between two services. For each channel, there is a
single service that produces messages and a single service
that consumes messages. Multiple producers or multiple
consumers connected to the same channel are not allowed.
Data are consumed from these queues in a first-in first-out
order. Each service port is linked to at most one other port
through a unidirectional unbounded FIFO queue. Services
are allowed to read from an input port and are allowed to
write to an output port. The read operation is blocking, and
the write operation is nonblocking. When tokens are
available on every input, the service will execute.

3.2.3 Modeling Behaviors of Register Links

In this model, register link is also a unidirectional nonblock-
ing channel. But the behavior semantic of a register link and a
FIFO-buffered channel is very different. In [21], the behavior
of a register link is defined as follows:

. Writing to a full register link overwrites a previously
written value.

. Reading from a register link returns the last
received value.

. A value can be returned multiple times.

In this paper, we only care about the context’s influence
on web service’s behaviors. A register link is used to carry
context information between two web services or between
a web service and a sensor service. We do not consider
the circumstance that a register link is between two sensor
services.

The circumstance of a register link between a web service
and a sensor service is depicted in Fig. 2.

In this circumstance, context information, which is
captured by sensor, including network bandwidth, user
preference, and so on, will be sent to a web service for use.
When the web service is to execute, the event of reading
from its input register link Rl1 will be triggered, to make
sure that the latest contexts are read and used by the web
service. After execution, the web service may write other
context information to its output register link Rl2.

As to the circumstance of a register link between two web
services, we consider the following case, depicted in Fig. 3.

In this case, S1 and S2 are two interacting web services.
S1 interacts with S2 through FIFO-buffered channel C1 and
a register link Rl1. The execution of S1 will trigger a writing
event to C1. When a reading event from C1 finishes, S2 will
execute. Also, the execution of S2 will trigger a writing
event to Rl1, to notify S1 whether the interaction is

successful. So, the context information in Rl1 denotes
feedback information from S2. From this feedback informa-
tion, S1 will decide whether to adjust its control strategy
and reply or not.

3.2.4 Service Interaction Events

In this model, there are five service interaction events,
which are reading from an FIFO-buffered channel, writing
to an FIFO-buffered channel, reading from a register link,
writing to a register link, and executing a web service. We
named these five events as readchannelðÞ, writechannelðÞ,
readregðÞ, writeregðÞ, and executeðÞ. For an interacting web
service, its behavior trace is composed of four reading/
writing events (executeðÞ is an internal event), the event
order lies in the computation logic. A single trace denotes
the execution of a single web service and a composite trace
of all services represents the unrolled execution of context-
aware web service network.

4 BEHAVIOR SEMANTICS OF A CONTEXT-AWARE

WEB SERVICE NETWORK

In this section, based on the works in [40], we describe
behavior semantics of context-aware web service network
using CCS process algebra [41], [42]. We add context
awareness, behavior compatibility, and some other proper-
ties to basic semantics of the KPN.

Let C be the set of FIFO channels and for each channel
c 2 C, with a channel alphabet �c. Let R be the set of
register links, and for every register link r 2 R , with a
alphabet �r.

Definition 1 (Context-aware web service). A context-aware

web service is a labeled transition system LTS ¼ ðS; s0; IC ;
OC ; IR;OR;Op;Pt;Ctxp;Act;!Þ, where

. S is the set of service states;

. s0 2 S is the initial service state;

. IC � C is the set of input channels;

. OC � C is the set of output channels;

. IR � R is the set of input register links;

. OR � R is the set of output register links;

. Op is the set of service operations;

. Pt is the set of service ports provided by service
operations;

. Ctxp is the context processor that is a software module
used to process contexts inside the web service; and

. Act represents the set of actions, Act ¼ fc?a; c!ajc 2
IC [OC; a 2 �cg [fr?b; r!bjr 2 IR [OR; b 2 �rg [
f�g, where c?a represents a read action from channel
c and c!a represents a write action to channel c with

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. X, XXXXXXX 2013

Fig. 2. Register link between a web service and a sensor service. Fig. 3. Register link between two web services.

token a, r?b represents a read action from register link
r and r!b represents a write action to register link r
with token b, f�g is the internal or silent action (all
other actions); !� S �Act� S is a labeled transi-
tion system, we write s1 �!

�
s2 if ðS1;�; s2Þ 2 !.

Definition 2 (Context-aware web service network). A

context-aware web service network is a tuple ðP ;NC ;NR;

IC ;OC ; IR;OR;Act; fLTSpjp 2 PgÞ, where

. P is the set of web services;

. NC 2 C is the set of internal channels (between two
services);

. NR 2 R is the set of internal register links (between
two services);

. IC 2 C is the set of input channels;

. OC 2 C is the set of output channels;

. IR 2 R is the set of input register links;

. OR 2 R is the set of output register links;

. Act represents the set of actions,
Act ¼ fc?a; c!a j c 2 IC [OC [NC; a 2 �cg [
fr?b; r!b j r 2 IR [OR [NR; b 2 �rg [f�g, where

c?a; c!a; r?b, r!b, f�g have the same meaning as that in

Definition 1; and
. LTSp ¼ ðSp; sp0 ; ICp ;OCp ; IRp

; ORp
; Opp;Ptp; Ctxpp;

Actp;!Þ denotes the labeled transition system of

p 2 P .

Definition 3 (Configuration). A configuration of a context-

aware web service network is a 3-tuple ð ; �; �Þ, where

. : P ! S ¼ [p2PSp is a service state function that
maps every service p 2 P to a local state s 2 Sp, here
Sp is the state set of service p;

. � : C ! �� is a channel state function that maps every
channel c 2 C to a finite string �ðcÞ on �c, here �c is
the corresponding channel alphabet of c, � denotes the
union of all channel alphabet, and �� denotes the set of
all finite (and infinite) strings over �; and

. � : R! �� is a register link state function that maps
every register link r 2 R to a finite string ðrÞ on �r,
here �r is the corresponding register link alphabet of r,
� denotes the union of all register link alphabet, and
�� denotes the set of all finite (and infinite) strings
over �.

In a context-aware web service network, there exists an

initial configuration ð 0; �0; �0Þ. Here, 0 maps every service

p 2 P to its initial state sp0 , �0 maps every channel c 2 C to

an empty string, and �0 maps every register link r 2 R to an

empty string.

Definition 4 (Behavior semantics of channel and register

link). The reading and writing semantics of FIFO channel and

register link are defined as follows:

1. A service reads from a channel:

 ðpÞ �!c?a s; �ðcÞ ¼ a�; c 2 C

ð ; �Þ �!c?a ð ½s=p�; �½�=c�Þ
: ð1Þ

2. A service writes to a channel:

 ðpÞ �!c!a s; �ðcÞ ¼ �; c 2 C

ð ; �Þ �!c!a ð ½s=p�; �½a�=c�Þ
: ð2Þ

Here, � 2 �� and ½s=p� is the function with the same

domain as except that ðpÞ ¼ s. �½�=c�Þ is the

function with the same domain as � except that

�ðcÞ ¼ �.
3. A service reads from a register link:

 ðpÞ �!r?b s; �ðrÞ ¼ b�; r 2 R

ð ; �Þ �!r?R ð ½s=p�; �½b�=r�Þ
: ð3Þ

Here, we assume that b is the last received value in

register link r. If b has not been rewritten by a writing

event, it is still in a register link for further reading.

And, � 2 ��, ½s=p� is the function with the same

domain as except that ðpÞ ¼ s, �½�=r� is the function
with the same domain as � except that �ðrÞ ¼ �.

4. A service writes to a register link:

 ðpÞ �!r!b s; �ðrÞ ¼ �; r 2 R

ð ; �Þ �!r!R ð ½s=p�; �½b�=r�Þ
: ð4Þ

Here, we assume register link r is not full. When r is

full, let b0 is the last token in register link r, the above

expression will be

 ðpÞ �!r!b s; �ðrÞ ¼ �b0; r 2 R

ð ; �Þ �!r!R ð ½s=p�; �½b�=r�Þ
: ð5Þ

That is, after b is written to the full register link r, the

last token b0 in a register link r has been rewritten.

Definition 5 (Execution of context-aware web service

network). A labeled transition system LTS is defined as a

tuple ðZ; z0;NC ;NR; IC ;OC ; IR;OR;Act;!Þ, where

. Z is the set of all configurations;

. z0 2 Z is the initial configuration;

. NC � C is the set of internal channels (between two
services);

. NR � R is the set of internal register links (between
two services);

. IC � C is the set of input channels;

. OC � C is the set of output channels;

. IR � R is the set of input register links;

. OR � R is the set of output register links;

. Act represents the set of actions, the meaning is the
same as that in Definition 2; and

. !� Z �Act� Z is a labeled transition relation, we
write z1 �!

�
z2 if ðz1;�; z2Þ 2 �!.

An execution of a context-aware web service network is

a sequence k ¼ z0 �!
�0

z1 �!
�1

z2 �!
�2 � � � zi �!

�i � � � of config-

urations, zi 2 Z and action �iAct, such that zi �!
�i

ziþ1 for all

i � 0. Every execution step zi �!
�i

ziþ1 denotes a synchroni-

zation point of interacting web services in a context-aware

web service network.

ZHANG ET AL.: A NOVEL PROCESS NETWORK MODEL FOR INTERACTING CONTEXT-AWARE WEB SERVICES 5

Definition 6 (Behavior trace and composite behavior

trace). In an execution of a context-aware web service
network, as described in Definition 5, we define a behavior
trace of an interacting context-aware web service p as a finite
action sequence �p ¼ �p1�p2 � � ��pi � � ��pn, where �pi 2 Act,
Act represents the set of reading or writing actions, the
meaning is the same as that in Definition 2, 1 � i � n, n 2 N ,
N is the set of positive integers. We define the finite sequence
� ¼ �0�1 � � ��i � � � in execution k ¼ z0 �!

�0
z1 �!

�1
z2 �!

�2

� � � zi �!
�i � � � as a composite behavior trace of this network.

Composite behavior trace represents the unrolled execution
of this network. We use traceðpÞ to denote behavior trace of an
interacting context-aware web service p.

Behavior traces can be used to analyze and verify the
behaviors of interacting web services. Behavior traces as
behavior description of a web service can serve as inputs to
related verification tools (e.g., CWB-NC [42]), where the
service behavior represented in the description can be
analyzed and verified.

In a context-aware web service network, we consider
contexts in register links as a kind of controlling informa-
tion to adjust internal control flow of a web service, not as
the parameters of a web service. Only when a web service is
to execute, it reads contexts from register links. So, if we do
not consider the influence of contexts, this network becomes
corresponding KPN. Next, we define behavior compatibil-
ity of two interacting web services, we only consider
writing/reading actions on internal FIFO channels between
this two interacting web services.

Let Q be the set of web services, q0 2 Q, qi 2 Q, where
1 � i � n, n 2 N , N is set of positive integers.

Definition 7 (Weak transitions). Let q 2 Q, q0 2 Q, � is
transition label for action that is not externally visible, if

. q)" q0 iff q ¼ q0 ¼!� q1 !� � � � !� qi !� � � �!�

qn ¼ q0, n � 0;
. q)� q0 iff q)" q0;
. q)� q0 iff q)" q1 !� q2)" q0ð� 6¼ �Þ,
then q)� q0 is a weak transition.

Definition 8 (Observational equivalence). Let S � Q�Q.
The relation S is a weak bisimulation relation if whenever
q1Sq2, then

. if q1 !� q01, for some q02, implies q2)� q02, and q
0
1Sq

0
2;

. if q2)� q02, for some q01 implies q1)� q01, and q
0
1Sq

0
2;

then q1 and q2 is observationally equivalent, or weakly
bisimulation equivalent, that is, for an external
observer, it is not possible to distinguish the behavior
of q1 and q2.

Definition 9 (Behavior compatibility). Two interacting web
services p and q are behavior compatible, denoted as
compatibleðp; qÞ, if they have opposite behavior trace (only
including reading/writing actions on FIFO channels between
this two web services), i.e., p is observationally equivalent to q.

For example, “!” denotes writing action, writingP ðpÞ
denotes the writing token sequence of service p, and

readingQðqÞ denotes the reading token sequence of service

q. Let traceðpÞ ¼ !Req:Receive:nil, traceðqÞ¼Req:!Receive:nil,

it is clear that writingP ðpÞ ¼ readingQðqÞ and writingQðqÞ ¼
readingP ðpÞ when p and q execute a reading/writing

action, respectively, that is, p ���!!Req
p0, q ���!Req

q0, then,

p0 ¼ Receive:nil, q0 ¼ !Receive:nil. It is clear writingP ðp0Þ ¼
readingQðq0Þ andwritingQðq0Þ ¼ readingP ðp0Þwhen p0 and q0

execute a reading/writing action, respectively, that is,

p0 ���!Receive
nil, q0 ���!!Receive

nil, p0 and q0 will be nil. It’s clear that

behaviors of p and q are opposite. So, they are behavior

compatible.
When a context-aware web service network is execut-

ing, deadlock may be occurred. In [43], Parks distin-
guishes between two types of deadlocks. “True” deadlocks
are those described in Kahn’s model, that is, all processes
are blocked on reads and all channels are empty, then the
computation has terminated. “Artificial” deadlocks are
caused by bounded channel capacities. Since channel
capacities are not restricted in Kahn’s model, artificial
deadlock is impossible.

In a context-aware web service network, a deadlock can

only be “True” deadlock. Since both FIFO-buffered chan-

nels and register link have unbounded size.

Theorem 1 (Undecidable). The problem of whether a context-

aware web service network will terminate is undecidable.

Proof. KPN can be thought of as a set of Turing machines

connected by one-way tapes. It is impossible to decide

whether an arbitrary Turing machine program will halt

[43], [44]. So, it is undecidable if a KPN will terminate.

This implies the fact that it is undecidable whether a

context-aware web service network will terminate. tu

Let I ¼ IC [IR, O ¼ OC [OR, in an execution k of this
network; we define an input function in : I ! �� [�� that
maps every input channel to a finite (and infinite) strings on
�� and every input register link to a finite (and infinite)
strings on ��. We define a function out : O! �� [�� that
maps every output channel to a finite (and infinite) strings
on �� and every output register link to a finite (and infinite)
strings on ��. For some c 2 I, we use k?c to denote the input
consumed on c and k?I to denote the input consumed by
the network in execution k. For some o 2 O, we use k!o to
denote the output on o, and k!O denotes the output of the
network in execution k.

Definition 10 (Completeness). An execution k of a context-

aware web service network with an input in : I ! �� [�� is

complete, denoted as completeðkÞ, iff the execution of

corresponding KPN is complete [43], i.e.,

. 8p 2 P , P is the set of web services, 9n 2 N , N is the
set of positive integers, such that 0 � jtraceðpÞj � n;
and

. 8o 2 O, ðk!oÞ=R ¼ outðoÞ=R, ðk!oÞ=R denotes the
output of the context-aware web service network in
execution (taking out those outputs produced by
actions involving register links set).

That is, in the execution k of corresponding KPN, every

behavior trace of web service has a finite number of actions,

and none of the output can be extended again.

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. X, XXXXXXX 2013

Definition 11 (Effectiveness). Here, we add the support of
register links to the definition of maximality and effectiveness of
an execution of KPN in [40] and define effectiveness of an
execution of a context-aware web service network. An execution
k of a context-aware web service network with an input in
: I ! �� [�� is effective, denoted as effectiveðkÞ, iff

. at the last configuration, only read actions are possible,
and all inputs of input in : I ! �� [�� have been
consumed entirely (maximality in [40], here, we
consider not only FIFO channels, but also register
links), i.e., if n 2 N is the length of the execution
zn !� , then � ¼ c?a and k?c ¼ inðcÞ for some c 2
IC [IR and a 2 �c [�r.

. every token produced in internal channels and internal
register links are ultimately consumed (effectiveness in
[40], here, we consider not only FIFO channels, but
also register links), i.e., k?NC ¼ k!NC and k?NR ¼
k!NR, where NC is the set of internal channels and NR

is the set of internal register links.

Theorem 2 (Comp2). In an execution k of a context-aware web
service network, if effectiveðkÞ, then completeðkÞ and
compatibleðp; qÞ, for some p; q 2 P , P is the set of web
services in this network.

Proof.

1. We first prove completeðkÞ can satisfy. An execu-
tion k of a context-aware web service network is
effective states that two conditions in Definition 11
are satisfied. The first condition of Definition 11
implies that at the last configuration, execution k
finishes, and only a new execution with a new
input can execute, that is, 8p 2 P , we assume
that k ¼ z0 !

�0
z1 !

�1 � � � zi � � � !
�i
zj, then traceðpÞ ¼

�1�2 � � ��j, theremust 9n 2 N , j � n, jtraceðpÞj ¼ j.
This satisfies the first condition of completeness
definition in Definition 10. Also, at the last
configuration, the fact that execution k finishes
implies that none of the output can be extended
again, that is, 8o 2 O, ðk!oÞ=R ¼ outðoÞ=R. This
satisfies the second condition of completeness
definition in Definition 10.

2. We prove that compatibleðp; qÞ can satisfy. 8p; q 2
P , p and q is two interacting web services, let
traceðpÞ ¼ �1�2 � � ��j; traceðqÞ ¼ �1�2 � � ��j. Ac-
cording to behavior compatibility in Definition 9,
we only need to consider writing/reading actions
on internal channels between this two services.
For an internal channel, writing action precedes
its opposite reading action. The second condition
of Definition 11 implies that if �1 ¼ c!a is a writing
action in traceðpÞ, there must exist �i in traceðqÞ is
the opposite reading action of �1. Because a
channel is a FIFO queue, the token a in channel
c must be read first in traceðqÞ. So, �i must be the
first action in traceðqÞ, that is, �i ¼ �1. For the
same reason, �2 is the opposite action of �2, �i is
the opposite action of �i, and so on, finally, p and q
produce the opposite behavior trace. This satisfies
the behavior compatibility in Definition 9, that is,
compatibleðp; qÞ, is satisfied. tu

5 BEHAVIOR ADAPTATION OF WEB SERVICES

Context-awareness allows a web service to adapt to changes
of their contexts. To realize this goal, we define a context
processor for every context-aware web service. A context
processor is a software module used to collect and process
every context input to a context-aware web service.
According to the basic semantic of a context-aware web
service network, when tokens are available on every input,
the web service will execute. Now, we consider the
influence of contexts on this web service. When a web
service is to be executed, the executeðÞ event will trigger its
context processor to work in advance, as depicted in Fig. 4.

The context processor reads from each register link in
terms of its reading semantic and puts them into a context
file. Then, the context processor is responsible for managing
and updating this file. A web service may contain lots of
context types and their values. Also, different web service
contains different contexts. So, we model context informa-
tion as an XML-formatted file that provides a unified
description format for different contexts. The platform
independent feature of XML can easily tackle the hetero-
geneity of different contexts. A web service uses such
context information to adjust its internal control flow as
well as content and format of its replies.

The context file of a web service is composed of elements
of context type. A context type contains a context value and
a context weight. The basic format of a context file is listed
in Table 1. Table 1 contains three context types that are user
preference, service availability, and network bandwidth.

During the execution of a web service, it responds to
each context in context file. The basic context processing
process is as follows:

1. Parse context file using XML parser.
2. For each context in context file, calculate weight or

influence on this web service.
3. Adjust internal control flow and reply of this web

service according to all contexts.

We use three kinds of contexts to characterize the
situation of service interactions, including interaction

ZHANG ET AL.: A NOVEL PROCESS NETWORK MODEL FOR INTERACTING CONTEXT-AWARE WEB SERVICES 7

Fig. 4. Context processor of a web service.

environment context (network bandwidth, operating
system, client’s devices, etc.), user context (user prefer-
ence, user location, etc.), and service context (business
restriction, service availability, execution time, success
rate, etc.). In actual application, we can obtain these
context values with various approaches. For example,
network bandwidth can be obtained through related
network bandwidth monitoring software, service execu-
tion time can be obtained through web log, user
preference can be expressed by user when interacting
with web service, service availability can be achieved by
calculating the average available time of a web service in
the past period of time, and so on.

Then, how do we calculate the influence of contexts on a
web service? We know that a context-aware web service
has to accommodate for a variety of context types. So, we
need to calculate influences on a web service in different
manner according to the characteristics of each context
type. For example, network bandwidth may influence the
execution of a web service; in case of a narrow bandwidth,
the web service may terminate; in case of a normal
bandwidth, the web service can output the expected result.
User preference context may influence the output of web
service, and we can use this context to filter the output of
the web service, thus getting a new output meeting the
user preference. In addition, the value type of each context
is also different, some is integer, some is string, and so on,
so we need to convert them to a uniform format for
convenience of calculations.

We define an influence function fðCÞ for every context
type, denoting the influence of context C on a web
service, whose value type is numeric and ranges from
0 to 100 or others according to the actual application. We
also assign a weight w whose value is ranging from 0 to 1
for each context C, denoting the influence degree of this
context type.

As discussed above, for a context-aware web service,
behavior adaptation is its capability to provide different
versions of behaviors to meet the needs of context changes.
We define different behavior versions for a context-aware
web service according to the influences of different context
types and their values. In this paper, we assume that the
influence function and weight are the same in different
behavior versions for a certain context type. So, we only
need to differentiate context types and their values in
different behavior versions. We use an XML-formatted file

to describe different behavior versions of a context-aware
web service. The following is an example:

<behaviorVersion1>

<UserPreference AircraftType=“Boeing737”/>

<ServiceAvailability>0.9</ServiceAvailability>

<NetworkBandwidth>4M</NetworkBandwidth>

</behaviorVersion1>

<behaviorVersion2>

<UserPreference AircraftType=“Boeing747”/>

<ServiceAvailability>0.8</ServiceAvailability>

<NetworkBandwidth>2M</NetworkBandwidth>

</behaviorVersion2>

......

Assuming that a web service has n behavior versions
denoted as s1; s2; . . . ; sn, then we use the following formula
to calculate the predefined rank for each version (one
version with a unique predefined rank):

Rank ¼
Xn
i¼1

fiðCiÞ � wi;

where fiðCiÞ is the influence function of context Ci, wi is the
weight of context Ci, 1 � i � n , n is a positive integer.
When the current context values of a web service are
obtained, we can calculate the rank of current context
situation using the formula above. From the predefined
behavior versions, we can select an appropriate one whose
predefined rank is equal or closest to the calculated one.

In an actual application, we can adjust internal control of
a web service by adjusting its behavior versions. If there
exists a large discrepancy between the rank of current
context situation and all predefined ranks, we need to
adjust the behavior versions of this web service statically or
dynamically to make sure an appropriate behavior version
can be selected. For example, we may add a new behavior
version when one or more new context types are added. We
may remove a behavior version when related context types
are not useful. We may also modify a behavior version by
modifying related context types and their values or
modifying related context influence functions and their
weights. We may define a context influence function and
specify its weight for a context with experiential values at
the very beginning, and then adjust them dynamically and
iteratively according to the reply of web service.

6 AN XML-FORMATTED SERVICE BEHAVIOR

DESCRIPTION LANGUAGE

Based on the basic semantics of context-aware web service
network, we design an XML-formatted service behavior
description language named behavior modeling language
for web service (BML4WS) to describe behaviors and
behavior adaptation of interacting context-aware web
services. Because contexts in register links are not the
parameters of a web service only as a kind of controlling
information to adjust internal control flow of a web service,
if we do not consider the influence of contexts, this network
becomes corresponding KPN. According to KPN semantics,
we can execute the KPN in parallel, as well as sequentially.
So, we consider web services in a context-aware web service
network as sequential processes in BML4WS.

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. X, XXXXXXX 2013

TABLE 1
A Context File of a Web Service

6.1 Structure of BML4WS

The basic structure of this description language is as follows:

<bml:process>

<bml:service name=“service name”>

<!-describing service operations ->
<bml:operation name=“operation name”>

<!-describing input ports of service operation ->

<bml:input>

<bml:port name=“port name” type=“type

name”/>

� � � � � �
</bml:input>

<!-describing output ports of service operation ->
<bml:output>

<bml:port name=“port name” type=“type

name”/>

� � � � � �
</bml:output>

� � � � � �
</bml:operation>

</bml:service>

<bml:service name=“service name”>� � � � � �</bml:service>

� � � � � �
<!- defining channels ->

<bml:channel>channel name</bml:channel>

� � � � � �
<!- defining register links ->

<bml:reg>register link name</bml:reg>

� � � � � �
<!-describing behavior interaction ->

<bml:composition>

<!-describing sequence interactions ->

<bml:sequence>

<!-reading from a channel ->

<bml:readchannel channel=“channel name”

service=“service name” operation=“operation

name” port=“port name”/>
� � � � � �
<!-executing a service operation ->

<!-At this moment, context processor of this web service will

read from each register link and form context file, then

context file will be processed by this web service - >

<bml:readreg reg=“register name” service=“service

name” operation=“operation name” port=“port

name”/>

� � � � � �
<bml:execute operation=“operation name”

service=“service name”/>

<!-writing to a channel ->
<bml:writechannel channel=“channel name”

service=“service name” operation=“operation

name” port=“port name”/>

� � � � � �
<!-writing to a register link ->

<bml:writereg reg=“register name” service=

“service name” operation=“operation name”

port=“port name”/>
� � � � � �

</bml:sequence>

� � � � � �
<bml:loop> � � � � � � </bml:loop>

� � � � � �
</bml:composition>

<bml:process>

6.2 BML4WS Interpreter

To evaluate and validate the service behavior modeling
approach presented in this paper, we design a BML4WS
interpreter to implement behavior interactions among web
services. The architecture of BML4WS interpreter is
described in Fig. 5. BML4WS interpreter is composed of
three main components:

. BML4WS document parser is used to load and parser a
BML4WS service behavior description file; the
document object model (DOM) tree of BML4WS
file is depicted in Fig. 6. The output is composite
behavior trace of the whole system represented by
this description file. Algorithm 1 shows the genera-
tion algorithm of composite behavior trace.

. Scheduler for service interaction events is used to
schedule and execute every service interaction event
in composite behavior trace. Algorithm 2 shows the
scheduling algorithmof the composite behavior trace.

. Service interaction APIs is the Java implementation of
five service interaction events that are readchannelðÞ,
writechannelðÞ, readregðÞ, writeregðÞ, and executeðÞ.

ZHANG ET AL.: A NOVEL PROCESS NETWORK MODEL FOR INTERACTING CONTEXT-AWARE WEB SERVICES 9

Fig. 5. Architecture of BML4WS interpreter.

Fig. 6. DOM tree of BML4WS file.

Algorithm 1. BuildCompositeTrace(BML4WSFile)
Inputs: BML4WSFile: a BML4WS service behavior
description file
Outputs: actionList: a composite behavior trace of the
system represented by BML4WSFile
01 ArrayList<ActionType> actionList =
01 new ArrayList();
02 ActionType action=null;
03 for all element in BML4WSFile do
04 if(element.getName.equals(“composition”)) then
05 for all subelement of element do
06 action= buildAction(subelement);
06 //add into actionList
07 actionList.add(action);
08 end for
09 endif
10 end for
11 return actionList

BuildAction(element)
Inputs: an element of BML4WS Document
Outputs: action type: one of readchannel, writechannel,

readreg, writereg and execute
12 elname=element.getName;
13 if (elname.equals(“readchannel”)) then
14 ReadChannel readChannel =
14 new ReadChannel();
15 return readChannel;
16 elseif(elname.equals(“writechannel”)) then
17 WriteChannel writeChannel =
17 new WriteChannel();
18 return writeChannel;
19 elseif(elname.equals(“readreg”)) then
20 ReadReg readReg = new ReadReg();
21 return readReg;
22 elseif(elname.equals(“writereg”)) then
23 WriteReg writeReg = new WriteReg();
24 return writeReg;
25 elseif(elname.equals(“execute”)) then
26 Execute execute = new Execute();
27 return execute;
28 endif

Algorithm 2. ScheduleInteractionEvents(actionList)
Inputs: actionList: a composite behavior trace of the system
represented by BML4WSFile
Outputs: output of FIFO channels and register links
01 for all event e in actionList do
02 if(e.getName().equals(“readchannel”)) then
03 invoking readchannel();
04 elseif(e.getName().equals(“writechannel”)) then
05 invoking writechannel();
06 elseif(e.getName().equals(“readreg”)) then
07 invoking readreg();
08 elseif(e.getName().equals(“writereg”)) then
09 invoking writereg();
10 elseif(e.getName().equals(“execute”)) then
11 invoking execute();
12 endif
13 end for

We implement five service interaction events using Java
remote method invocation and Java stream programming
technologies.

7 CASE STUDY

7.1 A Context-Aware Ticket Booking System

We design a context-aware ticket booking system, which is
composed of four interacting web services, i.e., Client
service, Customer service, Order service, and Inventory
service. We use visual BML4WS editor implemented by
ourselves to design the context-aware ticket booking system,
as shown in Fig. 7.

The basic business process of this ticket booking system
is as follows:

1. A Client service collects booking requests from users
through channel “coll” and form a FIFO queue of
request messages.

2. The Client service reads from channel “coll” and
sends a request message through channel “requ” to
Customer service for booking tickets. A request
message represents a ticket booking request that is
an XML-formatted file, describing three booking
parameters that are departure station, destination
station, and date.

3. The Customer service receives a request message
and sends message through channel “ask” to Order
service to ask creating order.

4. The Order service sends request to Inventory
service through channel “quer” for querying the
ticket stock.

5. The Inventory service retrieves and sends the ticket
stock result to Order service through channel “resu.”

6. If the tickets have been sold out, the order will not be
created, Order service will send a rejection message
to Customer service through channel “con,” and
Customer service sends the rejection message to
Client service through channel “repl.”

7. If the tickets is available, the order and booking
result will be created, Order service sends booking
result (order information) to Client service through
channel “info.”

8. Return to 2 to deal with another ticket booking
request.

9. Return to 1 to deal with another queue of booking
request messages.

In this application, if we do not consider the influence of
context information on every service, the Order service will

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. X, XXXXXXX 2013

Fig. 7. A context-aware ticket booking system.

send user an XML file that includes all ticket booking
results according to the booking parameters.

Now, we consider the influence of contexts on this
system. Many context information can be usable in this
ticket booking system, including user preference, user
feedback, service availability, user location, network band-
width, and so on. Assuming that we only concern about
three types of context information, which are user pre-
ference (user context, UP for short), service availability
(service context, SA for short), and network bandwidth
(interaction environment context, NB for short). These three
types of contexts will be used by Inventory service when
ticket stock are retrieved, as depicted in Fig. 7.

In this case, user preference context comes from the
current user’s input, service availability context is obtained
by calculating the average available time of this web service
in the past period of time (second), and network bandwidth
context comes from related network bandwidth monitoring
software. User preference context will influence output
result of the web service, network bandwidth, and service
availability context will influence the execution efficiency of
the web service.

To unify and standardize different value type of
contexts, for every context, we define an influence function
f : C ! N that maps a context value x 2 C on a score n,
where C is a set of context values, n 2 N , N is the set of
values ranging from 0 to 100. We define the following
context influence function experientially for every context:

For user preference context, fup ¼ 100, for every c 2 C, C
is the set {“Boeing737,” “Boeing747,”. . . }.

For service availability context, fsa ¼ 100 � c, 0 � c � 1.
For network bandwidth context,

fnb ¼

100; c > ¼ 4
80; 1 � c < 4
60; 0 < c < 1

0; c ¼ 0:

8>><
>>:

We also need to specify a weight for every context.
According to the importance degree of every context, we
specify the experiential weights as 0.6, 0.2, 0.2 for user
preference, service availability, and network bandwidth. In
actual situation, we may dynamically adjust these influence
functions and related weights according to the reply of web
service. Using the rank calculation formula in Section 5, we
can calculate the predefined ranks for some frequently used
behavior versions, for example, a rank of a main behavior
version may be Rank ¼ 100 � 0:6þ 0:2 � 90þ 0:2 � 80 ¼ 94.
In current situation, for user preference context, the current
user can decide the actual context value through user
interface provided by Client service. For example, the user
may select an expected aircraft type, such as Boeing737, by
clicking a CheckBox item through user interface provided
by Client service. The real-time context value is passed to
Inventory service through register link UP. For network
bandwidth and service availability contexts, they are
collected dynamically by context processor of Inventory
service from their own register link. Then, context value
and its weight are stored into a context file. Using all
context values and their weights, the rank of behavior
version under current situation can be calculated. Accord-
ing to the calculated rank, the context processor will select a
matched behavior version from the predefined behavior

versions whose rank is equal or closest to the calculated one

to execute.

7.2 Describing Service Interaction Using BML4WS

In this section, we use BML4WS to describe behaviors of

interacting context-aware web services. The corresponding

BML4WS file can be exported from visual BML4WS editor.

Here, we only describe interaction between Order service

and Inventory service.

<bml:process>

<!- Describing Order service and Inventory service->

<bml:service name=“Order”>

<bml:operation name=“ordResuOp”>
<bml:input>

<bml:port name=“is” type=“xml”/>

</bml:input>

<bml:output>

<bml:port name=“oc” type=“xml”/>

<bml:port name=“oi” type=“xml”/>

</bml:output>

</bml:operation>
</bml:service>

<bml:service name=“Inventory”>

<bml:operation name=“invOp”>

<bml:input>

<bml:port name=“iq” type=“xml”/>

</bml:input>

<bml:output>

<bml:port name=“os” type=“xml”/>
</bml:output>

</bml:operation>

</bml:service>

<!- defining channels and register links ->

<bml:channel>quer</bml:channel>

<bml:channel>resu</bml:channel>

<bml:channel>info</bml:channel>

<bml:reg>SA</bml:reg>
<bml:reg>UP</bml:reg>

<bml:reg>NB</bml:reg>

<!- Describing interaction between Order service and

Inventory service ->

<bml:composition>

<bml:loop>

<bml:sequence>

<!-here, we omitted the description of writing to
channel quer ->

<!-reading from channel quer->

<bml:readchannel channel=“quer”

service=“Inventory” operation=“invOp” port=“iq”/>

<!-next, service operation invOp will execute. At this moment,

context processor of this web service will read from each

register link and form context file, then context file will be

processed by this web service ->

<bml:readreg reg=“SA” service=“Inventory”

operation=“invOp” port=“csa”/>

<bml:readreg channel=“UP” service=“Inventory”

operation=“invOp” port=“cup”/>

<bml:readreg channel=“NB” service=“Inventory”

ZHANG ET AL.: A NOVEL PROCESS NETWORK MODEL FOR INTERACTING CONTEXT-AWARE WEB SERVICES 11

operation=“invOp” port=“cnb”/>
<bml:execute operation=“invOp”

service=“Inventory”/>

<bml:writechannel channel=“resu” service=“

Inventory” operation=“invOp” port=“os”/>

<bml:readchannel channel=“resu” service=“Order”

operation=“ordResuOp” port=“ic”/>

<!-executing a service operation ordResuOp ->

<bml:execute operation=“ordResuOp”
service=“Order”/>

<!-writing to channel info->

<bml:writechannel channel=“info” service=“Order”

operation=“ordResuOp” port=“oi”/>

</bml:sequence>

</bml:loop>

</bml:composition>

</bml:process>

7.3 Execution and Analysis of a Ticket Booking
System

When BML4WS document of the ticket booking system is
exported, we can use BML4WS interpreter to interpret and
execute it. We can also use related definitions and
theorems presented in Section 4 to analyze and verify the
properties of this system. For example, we assume an
effective execution of a ticket booking system with an input
in ¼ ½x1; x2; x3�, x1, x2, and x3 denote three XML-formatted
ticket booking requests.

From the BML4WS description, we can extract composite
behavior trace of the system using Algorithm 1. From
composite behavior trace of the system, we can extract single
behavior trace for every web service. If we only process a
booking request, the behavior traces of Order service and
Inventory service are as follows:

traceðOrderÞ ¼ ask:!quer:resu:ð!conþ !infoÞ
traceðInventoryÞ ¼ quer:SA:UP:NB:!resu:

From Theorem 2, we know that an effective execution
implies a complete execution, and any two interacting web
services in this system are behavior compatible. In this
complete execution of the ticket booking system, three
requests must be consumed entirely, and every behavior
trace has a finite number of actions, as follows:

traceðOrderÞ ¼ ask:!quer:resu:ð!conþ !infoÞ:ask
:!quer:resu:ð!conþ !infoÞ:ask:!quer:resu:ð!conþ !infoÞ
traceðInventoryÞ ¼ quer:SA:UP:NB:!resu:quer:

SA:UP:NB:!resu:quer:SA:UP:NB:!resu:

Next, we verify whether two interacting web services are
behavior compatible. We only need to consider writing/
reading actions on internal FIFO channels between this two
interacting web services. So, the trace of Order service and
Inventory service becomes

traceðOrderÞ ¼ !quer:resu:!quer:resu:!quer:resu

traceðInventoryÞ ¼ quer:!resuquer:!resuquer:!resu:

It is evident that traceðOrderÞ and traceðInventoryÞ have
opposite behavior trace. So, in the complete execution of

ticket booking system, Order service and Inventory service
are behavior compatible.

In fact, in an actual execution of this system, using
related definition, it is easy for us to verify whether this
execution is effective or complete, and whether two
interacting web services are behavior compatible.

8 CONCLUSIONS AND FUTURE WORKS

In this paper, a novel process network approach was
proposed to model dynamic behaviors of interacting
context-aware web services, aiming to effectively process
and take advantage of contexts and realize behavior
adaptation of web services. We presented the interaction
model of context-aware web services based on a formal
model, CAPN. The CAPN was extended to context-aware
web service network by adding a kind of sensor processes,
which is used to catch contextual data from external
environment. Through modeling the register link’s beha-
viors, we present how a web service can respond to its
context changes dynamically. Its explicit formal behavior
semantic was provided to implement context awareness
and behavior adaptation of context-aware web service. We
designed an XML-formatted service behavior description
language named BML4WS to describe behaviors and
behavior adaptation of interacting context-aware web
services. Our model was demonstrated in a practical case,
i.e., ticket booking system. The results illustrated that the
proposed approach is available and flexible.

Our future work is to make an attempt to implement
context-aware web service network for more web service
applications. As discussed above, context-aware web
service network is based on the CAPN and is adequate to
model service interactions in several aspects, including its
parallelism and communication mechanism, compositional
property, executable property, and context-awareness se-
mantics. Other formal models, such as Petri net and process
algebra, lack these advantages.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grant Nos. 60873054, 60973013,
61073056, 61073134, and 51179020), the Fundamental
Research Funds for the Central Universities (Grant No.
2011JC006), and the Dalian Science and Technology Fund
(Grant No. 2010J21DW006).

REFERENCES

[1] M. Keidl and A. Kemper, “Towards Context-Aware Adaptable
Web Services,” Proc. 13th Int’l World Wide Web Conf., pp. 55-65,
May 2004.

[2] A. Abraham, J. Chung, and S. Han, “Web Services: Recent
Advances and Applications,” J. Digital Information Management,
vol. 4, no. 1, pp. 1-3, 2006.

[3] F. Gandon and N. Sadeh, “Semantic Web Technologies to
Reconcile Privacy and Context Awareness,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 1, no. 3,
pp. 241-260, 2004.

[4] H. Truong and S. Dustdar, “A Survey on Context-Aware Web
Service Systems,” Int’l J. Web Information Systems, vol. 5, no. 1,
pp. 5-31, 2009.

[5] L. Li, D. Liu, and A. Bouguettaya, “Semantic Based Aspect-
Oriented Programming for Context-Aware Web Service Composi-
tion,” Information Systems, vol. 36, no. 3, pp. 551-564, 2011.

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. X, XXXXXXX 2013

[6] R. Hervas and J. Bravo, “Towards the Ubiquitous Visualization:
Adaptive User-Interfaces Based on the Semantic Web,” Interacting
with Computers, vol. 23, no. 1, pp. 40-56, 2011.

[7] R. Bhatti, E. Bertino, and A. Ghafoor, “A Trust-Based Context-
Aware Access Control Model for Web-Services,” Distributed and
Parallel Databases, vol. 18, no. 1, pp. 83-105, 2005.

[8] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, F. Rosenberg,
and S. Dustdar, “A Context-Based Mediation Approach to
Compose Semantic Web Services,” ACM Trans. Internet Technol-
ogy, vol. 8, no. 1, article 4, 2007.

[9] J. Simoes and S. Wahle, “The Future of Services in Next
Generation Networks,” IEEE Potentials, vol. 30, no. 1, pp. 24-29,
Jan./Feb. 2011.

[10] Z. Chen, K. Ma, A. Abraham, B. Yang, and R. Sun, “An Executable
Business Model for Generic Web Applications,” Proc. Int’l Conf.
Computer Information Systems and Industrial Management Applica-
tions, pp. 573-577, 2010.

[11] T. Tiropanis, H. Davis, D. Millard, and M. Weal, “Semantic
Technologies for Learning and Teaching in the Web 2.0 Era,”
IEEE Intelligent Systems, vol. 24, no. 6, pp. 49-53, Nov./Dec.
2009.

[12] L. Zhang, “Services Design and Optimization,” IEEE Trans.
Services Computing, vol. 2, no. 2, article 93, Apr.-June 2009.

[13] M. Brambilla, S. Ceri, F. Facca, I. Celino, D. Cerizza, and E. Valle,
“Model-Driven Design and Development of Semantic Web
Service Applications,” ACM Trans. Internet Technology, vol. 8,
no. 1, pp. 3-32, 2007.

[14] I. Elgedawy, Z. Tari, and J. Thom, “Correctness-Aware High-Level
Functional Matching Approaches for Semantic Web Services,”
ACM Trans. Web, vol. 2, no. 2, article 12, 2008.

[15] K. Scott and R. Benlamri, “Context-Aware Services for Smart
Learning Spaces,” IEEE Trans. Learning Technologies, vol. 3, no. 3,
pp. 214-227, July-Sept. 2010.

[16] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, and C.-H. Chen, “Dynamic
Web Service Selection for Reliable Web Service Composition,”
IEEE Trans. Services Computing, vol. 1, no. 2, pp. 104-116, Apr.-June
2008.

[17] A. Segev and E. Toch, “Context-Based Matching and Ranking of
Web Services for Composition,” IEEE Trans. Services Computing,
vol. 2, no. 3, pp. 210-222, July-Sept. 2009.

[18] A. Staikopoulos, O. Cliffe, R. Popescu, J. Padget, and S. Clarke,
“Template-Based Adaptation of Semantic Web Services with
Model-Driven Engineering,” IEEE Trans. Services Computing,
vol. 3, no. 2, pp. 116-130, Apr.-June 2010.

[19] D. Vieira, C. Melo, A. Bezerra, Y. Ghamri-Doudane, and N.
da Fonseca, “LatinCon01—A Content-Oriented Web Cache Policy
under P2P Video Distribution Systems,” IEEE Latin Am. Trans.,
vol. 8, no. 4, pp. 349-357, Aug. 2010.

[20] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming,” Information Processing, J.L. Rosenfeld, ed., pp. 471-
475, North Holland, Aug. 1974.

[21] H. van Dijk, H. Sips, and E. Deprettere, “Context-Aware Process
Networks,” Proc. IEEE Int’l Conf. Application-Specific Systems,
Architectures, and Processors, pp. 6-16, 2003.

[22] D. Zhovtobryukh, “Context-Aware Web Service Composition,”
PhD dissertation, Univ. of Jyvaskyla, 2006.

[23] D. Kulkarni and A. Tripathi, “A Framework for Programming
Robust Context-Aware Applications,” IEEE Trans. Software Eng.,
vol. 36, no. 2, pp. 184-197, Mar./Apr. 2010.

[24] M. Sama, S. Elbaum, F. Raimondi, D. Rosenblum, and Z. Wang,
“Context-Aware Adaptive Applications: Fault Patterns and Their
Automated Identification,” IEEE Trans. Software Eng., vol. 36,
no. 5, pp. 644-661, Sept./Oct. 2010.

[25] C. Jacob and S. Steglich, “Modeling Dynamic Service Behavior
Using Context Functions,” Proc. First Int’l Conf. Networked Digital
Technologies, pp. 88-93, 2009.

[26] J. Zhou, E. Gilman, J. Palola, J. Riekki, M. Ylianttila, and J. Sun,
“Context-Aware Pervasive Service Composition and Its Imple-
mentation,” Personal and Ubiquitous Computing, vol. 15, no. 3,
pp. 291-303, 2011.

[27] R. Hervás and J. Bravo, “COIVA: Context-Aware and Ontology-
Powered Information Visualization Architecture,” Software: Prac-
tice and Experience, vol. 41, no. 4, pp. 403-426, 2011.

[28] A.T. Manes, “Enabling Open, Interoperable, and Smart Web
Services—The Need for Shared Context,” Proc. W3C Web Services
Workshop, http://www.w3.org/2001/03/WSWS-popa/paper29,
2001.

[29] A.K. Dey, “Understanding and Using Context,” Personal and
Ubiquitous Computing, vol. 5, no. 1, pp. 4-7, 2001.

[30] X. Li, Y. Fan, Q.Z. Sheng, Z. Maamar, and H. Zhu, “A Petri Net
Approach to Analyzing Behavioral Compatibility and Similarity
of Web Services,” IEEE Trans. Systems, Man and Cybernetics, Part A:
Systems and Humans, vol. 41, no. 3, pp. 510-521, May 2011.

[31] C. Yan, C. Jiang, and Q. Li, “The Composition and Analysis of
Web Service Based on Petri Net,” Computer Science, vol. 34, no. 2,
pp. 100-103, 2007.

[32] J. Liao, H. Tan, and J. Liu, “Describing and Verifying Web Service
Using Pi-Calculus,” Chinese J. Computers, vol. 28, no. 4, pp. 635-642,
2005.

[33] X. Gu and Z. Lu, “A Formal Model for BPEL4WS Description of
Web Service Composition,” Wuhan Univ. J. Natural Sciences,
vol. 11, no. 5, pp. 1311-1319, 2006.

[34] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “LTSA-WS: A Tool
for Model-Based Verification of Web Service Compositions and
Choreography,” Proc. 28th Int’l Conf. Software Eng., pp. 771-774,
May 2006.

[35] T. Chaari and A. Celentano, “Design of Context-Aware Applica-
tions Based on Web Services,” Technical Report RR-2004-033,
INSA, Lyon, Sept. 2004.

[36] F.L.T. Chaari and A. Celentano, “Adaptation in Context-Aware
Pervasive Information Systems: The SECAS Project,” Int’l
J. Pervasive Computing and Comm., vol. 3, pp. 400-425, 2007.

[37] Y. Dou, G. Wu, J. Xu, and X. Zhou, “A Coarse-Grained
Reconfigurable Computing Architecture with Loop Self-Pipelin-
ing,” Science in China Series F: Information Sciences, vol. 52, no. 4,
pp. 575-587, 2009.

[38] D. Webb and A. Wendelborn, “The PAGIS Grid Application
Environment,” Proc. Int’l Conf. Computational Science, pp. 692-693,
2003.

[39] E. De Kock, W. Smits, P. van der Wolf, J. Brunel, W. Kruijtzer,
P. Lieverse, K. Vissers, and G. Essink, “YAPI: Application
Modeling for Signal Processing Systems,” Proc. 37th Ann. Design
Automation Conf., pp. 402-405, 2000.

[40] M. Geilen and T. Basten, “Requirements on the Execution of Kahn
Process Networks,” Proc. 12th European Conf. Programming,
pp. 319-334, 2003.

[41] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.
[42] R. Cleaveland, T. Li, and S. Sims, The Concurrency Workbench of the

New Century. Stony Brook Univ., 2000.
[43] T. Parks, “Bounded Scheduling of Process Networks,” PhD

dissertation, Electrical Eng. and Computer Sciences Dept., Univ.
of California, Berkeley, 1995.

[44] J. Buck and E. Lee, “Scheduling Dynamic Dataflow Graphs with
Bounded Memory Using the Token Flow Model,” Proc. Int’l Conf.
Acoustics, Speech, and Signal Processing, pp. 429-432, 1993.

Xiuguo Zhang received the PhD degree in
computer science from Dalian Maritime Univer-
sity, China. She is an associate professor at the
School of Information Science and Technology,
Dalian Maritime University. Her research inter-
ests include web services and software engi-
neering. She has authored more than 40
refereed journal/conference papers.

ZHANG ET AL.: A NOVEL PROCESS NETWORK MODEL FOR INTERACTING CONTEXT-AWARE WEB SERVICES 13

Hongbo Liu received the PhD degree in
computer science from the Dalian University of
Technology. He is a professor at the School of
Information Science and Technology, Dalian
Maritime University, China, with an affiliate
appointment in the Computer Science and
Biomedical Engineering Division at the Dalian
University of Technology. His research interests
include system modeling and optimization invol-
ving soft computing, nature-inspired computing,

swarm intelligence, multiagent systems, fuzzy inference systems, rough
set, and probabilistic model. His application areas include neuroinfor-
matics, cognitive computing, computational grids, web services,
machine learning, and data mining. He has authored more than
60 refereed journal/conference papers and book chapters, and some
of the works have also won best paper awards at international
conferences and received several citations. Some of the articles are
available in ScienceDirect’s Top 25 Hottest Articles. He co-organized
the 2010 China-Japan Joint Conference on Computational Geometry,
Graphs and Applications (CGGA ’10) in Dalian, China. In 2011, he was
the general chair of the Third IEEE International Conference on Soft
Computing and Pattern Recognition (SoCPaR ’11) in Dalian, China.

Ajith Abraham received the MS degree from
Nanyang Technological University, Singapore,
and the PhD degree in computer science from
Monash University, Melbourne, Australia. He is
currently the director of the Machine Intelligence
Research Labs, Scientific Network for Innova-
tion and Research Excellence, which has
members from more than 85 countries. He has
worldwide academic experience with formal
appointments in at Monash University, Australia;

Oklahoma State University; Chung-Ang University, Seoul, Korea; Jinan
University, China; Rovira i Virgili University, Tarragona, Spain; Dalian
Maritime University, China; Yonsei University, Seoul, Korea; the Open
University of Catalonia, Barcelona, Spain; the National Institute of
Applied Sciences, Lyon, France; and the Norwegian University of
Science and Technology, Trondheim. He servers or has served on the
editorial boards of more than 50 international journals and has also
guest edited 40 special issues on various topics. He has published more
than 800 publications, and some of the works have also won best paper
awards at international conferences. His research and development
experience includes more than 20 years in the industry and academia.
He works in a multidisciplinary environment involving machine intelli-
gence, network security, various aspects of networks, e-commerce, web
intelligence, web services, computational grids, data mining, and their
applications to various real-world problems. He has given more than
50 plenary lectures and conference tutorials in these areas. He is the
chair of the IEEE Systems, Man, and Cybernetics Society Technical
Committee on Soft Computing and a distinguished lecturer of the IEEE
Computer Society, representing Europe. He is a senior member of the
IEEE, the IEEE Computer Society, the Institution of Engineering and
Technology (United Kingdom), and the Institution of Engineers Australia.
He is the founder of several IEEE-sponsored annual conferences, which
are now annual events, including Hybrid Intelligent Systems, Intelligent
Systems Design and Applications, Information Assurance and Security,
Next Generation Web Services Practices, Computational Aspects of
Social Networks, Soft Computing and Pattern Recognition, and Nature
and Biologically Inspired Computing.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. X, XXXXXXX 2013

