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Abstract 

 
Job Scheduling on Computational Grids is gaining 

importance due to the need for efficient large-scale 

Grid-enabled applications. Among different 

optimization techniques addressed for the problem, 

Genetic Algorithm (GA) is a popular class of solution 

methods. As GAs are high level algorithms, specific 

algorithms can be designed by choosing the genetic 

operators as well as the evolutionary strategies. In this 

paper we focus on Struggle GAs and their tuning for 

the scheduling of independent jobs in computational 

grids. Our results showed that a careful hash 

implementation for computing the similarity of 

solutions was able to alleviate the computational 

burden of Struggle GA and perform better than 

standard similarity measures. 

 

1. Introduction 
 
With the emerging paradigm of Grid Computing and 
the development of Grid infrastructures, Grid-based 
applications are becoming a common approach for 
solving many complex problems. A key issue in this 
kind of applications is scheduling jobs into Grid 
resources efficiently, which is known to be 
computationally hard and much more difficult than its 
standard version for sequential or LAN computation 
environments.  
 

   Job Scheduling on Computational Grids is gaining 
importance due to the need for efficient large-scale 
Grid-enabled applications, e.g. in Optimization 
(Casanova et al. [1], Goux et al. [2] and Wright [3]), 
Collaborative/eScience Computing (Newman et al. [4], 
Paniagua et al. [5]) and many applications arising from 
concrete types of eScience Grids such as Science 
Grids, Access Grids, Knowledge Grids and in Data-
Intensive Computing (Beynon al. [6]). Scheduling is a 
challenging problem in a Grid environment due its 
dynamic nature and the large number of resources to be 
managed and jobs to be scheduled. Furthermore, 
resources can have their own local policies (regarding 
access, cost etc.) to be taken into account. The problem 
is multi-objective in its general definition, as there are 
several optimization criteria to be matched, such as 
makespan, flowtime, and resource utilization. 

Several approaches are being addressed in the 
literature for the problem (Abraham et al. [7], Braun et 
al. [8], Xhafa [9], Xhafa et al. [10, 11], Zomaya et al. 
[12]) aiming to obtain schedulers capable of delivering 
fast planning of jobs to computational resources of the 
grid system.  In particular, Genetic Algorithms (GA) 
[13] have proved to be a good alternative for solving a 
wide variety of hard combinatorial optimization 
problems. GAs are a population-based approach where 
individuals represent possible solutions, which are 
successively evaluated, selected, crossovered, mutated 
and replaced by simulating the Darwinian evolution 
found in nature. 



The research work on GAs has shown that a key 
issue in GAs is the convergence of the algorithm: a fast 
convergence of the population would stagnate the 
search to local optima whereas slower convergence 
would require a considerably longer time towards sub-
optimal solutions. The convergence of GAs is achieved 
by means of selection and replacement strategies and it 
is, therefore, very important to carefully tune these 
strategies. In particular, the selective pressure directly 
affects the tradeoff between the exploration and 
exploitation of the search space. Indeed, if the 
population converges rapidly GA would give more 
priority to the exploitation and, vice-versa, when the 
population is kept diverse, other regions of the search 
space would be explored aspiring thus to find better 
solutions. 

In this work, we focus on the importance of tuning 
the replacement mechanism of GA for scheduling in 
computational grids. The interest in investigating this 
aspect is motivated by the need to design efficient 
schedulers that will be able to deliver fast and quality 
planning of jobs to resources rather optimal solutions 
in a dynamic environment. More precisely, we study 
the tuning of the Struggle strategy (Grueninger [14]), 
which is known for its effectiveness but suffers from a 
high computational cost.  

The rest of the paper is organized as follows. In 
Section 2, we briefly present the scheduling of 
independent jobs considered in this work. The Struggle 
strategy together with similarity measures are 
introduced in Section 3. The experimental study and 
some computational results are given in Section 4. We 
conclude in Section 5 with some remarks and 
indications for future work. 
 

2. Problem definition 
 
In this work we consider the problem formulation of 
job scheduling based on the Expected Time To 
Compute (ETC) simulation model of Braun et al. [8]. 
An instance of the problem consists of the following. 
• A number of independent (user/application) jobs 

that must be scheduled. Any job has to be 
processed entirely in a unique resource (non-
preemptive mode).  

• A number of heterogeneous machines candidates 
to participate in the planning. 

• The workload of each job (in millions of 
instructions).  

• The computing capacity of each machine (in 
millions of instructions per second –mips).  

• For any machine m, the time when the machine 
will have finished the previously assigned jobs 

(ready[m]). This parameter measures the previous 
workload of a machine.  

• The Expected Time to Compute (ETC) matrix of 
size number_jobs × number_machines, where a 
position ETC[i][j] indicates the expected 
execution time of job i in machine j. This matrix is 
either computed from the information on workload 
and mips or can be explicitly provided. 

We aim to minimize the makespan and flowtime and 
utilize the resources effectively. These parameters are 
defined as follows. 
 
• Makespan is the finishing time of latest job:   

minschedule max {Fj: j∈Jobs}     (1) 
where Fj is the finishing time of job j. 
 

• Flowtime is the sum of finishing times of jobs:  
minschedule ∑ j∈Jobs Fj                 (2) 

 The aforementioned parameters are very important for 
studying and characterizing any Grid system. 
Makespan measures the productivity (throughput) of 
the grid system whereas the flowtime measures the QoS 
of the Grid system. 

 

3. Struggle strategy in GAs and similarity 

measures  
 
In Struggle GAs (hereafter, SGA) [14], a new 
generation of individuals is created by replacing only a 
portion of the population with the new individuals. 
Unlike other replacement strategies, in SGA, a new 
individual replaces the individual that is most similar to 
it only in case the new individual obtains a better 
fitness value than the one to be replaced. This is done 
in order to adaptively maintain certain diversity among 
the population. The aim is to preserve the optimization 
velocity but delaying its tendency to converge in order 
to reach a better convergence point. 
    This strategy has shown to be very effective for 
many problems yet, there is a critical issue here: the 
computational cost of this replacement strategy is very 
high. Indeed, in order to find which individuals should 
leave the population, any new individual of the 
intermediate population has to be compared and its 
similarity measured against all the individuals of the 
current population. Obviously, this leads to a quadratic 
order computational time, which could be very large, if 
large size populations were to be considered. In fact, 
this is precisely the case of scheduling independent 
jobs in computational grids; their large scale and 
scalability are critical factors since not only the number 
of resources and jobs submitted to the Grid system are 
expected to be large or very large but also they could 
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increase over time.  It is clear that similarity measures 
which are not efficient could consume much of the GA 
running time in detriment to the proper search time. 
 
3.1. Standard similarity measures 
 
In order to compare the similarity between solutions, a 
measure of similarity or distance function has to be 
defined and used. Standard similarity measures include:  
• Hamming distance: given two individuals S1 and S2 

encoding two schedulings of N jobs, let g[i]=1, iff 
S1[i] = S2[i] and g[0]=0, otherwise. Similarity is 
then calculated as Simh(S1,S2)=∑{i=1..N} g[i]/N. 

• Euclidian distance: This similarity is based on the 
Euclidean distance. Given two vector solutions S1 
and S2, by considering them as two points in N-
dimensional space, the similarity is then computed 
as the Euclidean distance between them: 

Sime(S1,S2) = ∑
=
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• Cosine distance: In this case, the similarity is 
measured using the angle of the two vector solutions 
S1 and S2 of the N-dimensional space. Cosine values 
close to 1 would mean more similarity.  
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3.2. Hash-based similarity measure 
 
The standard similarity measures given above has 
linear time computational cost in number of jobs. 
Therefore for a population of pop_size the standard 
struggle strategies would take O(intermediate_pop_size 

× pop_size) × N. Reducing the quadratic factor of 
O(intermediate_pop_size × pop_size) to a linear time 
factor would be very desirable in this case since in each 
replacement step it would take a considerable time in 
detriment to the proper search time of the GA. In order 
to achieve this, we propose the use of hash techniques 
so that given a new individual of the intermediate 
population we can find in constant time the individual 
most similar to it. 
    In order to design the hash table, we have to first 
define the key to identify the individuals of the 
population. The key information is the basis for 
computing the degree of similarity of the struggle 
genetic operator: the more accurate its definition the 
better the performance of the operator. In fact, a poor 
definition of the key would simply reduce the struggle 
operator to a random replacement. In our definition of 
the key the context is crucial: the key value should 

resume as much as possible the genetic information 
encoded in an individual; hence, if two key values are 
similar then their respective individuals are genetically 
similar. The following are three possible definitions: 
a) Fitness-based key: consists in using the fitness 

value, which is transformed, using a hash function, 
into the key value. Certainly this is a very 
simplistic approach by simply looking at 
makespan and flowtime values and clearly no 
genetic information is taken into account (we refer 
to this as ‘a’ key). 

b) Position-based key: having the permutation vector 
of task-resource allocation, in which tasks are 
sorted according to the resource they are assigned 
to, the key is defined as the sum of number of cells 
a component of the vector would move to the right 
as indicated by its value, when the vector is read in 
a circular way (we refer to this as ‘b’ key). For 
instance, for the vector of 7 tasks in Figure 1 
below, key=2+4+1+0+2+5+0=14. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Example position-based key 
calculation. 

 
Note that this definition uses the genetic 
characteristics of the solution; however, the 
relation task-resource is not explicitly taken into 
account, i.e., to which resource is assigned a task.  

c) Task-resource allocation key: In this case both 
information on tasks and resources is used.   The 
key value is now the sum of the absolute values of 
the subtraction of each position and its precedent 
in the vector of task-resource allocation (reading 
the vector in a circular way); we refer to this as ‘c’ 

key.  
 
 
 
 
 
 



The hash function is then defined as: 
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            N-1,                                    if k ≥ kmax 

 
where kmin and kmax correspond to the smallest and 
largest key value, respectively, in the population. The 
hash table has the same size as the population in order 
to obtain constant time access (in average). If an access 
fails, a few individuals in the population are randomly 
chosen and the most similar to the new one is 
considered for the replacement. Hence, the constant 
access is always ensured even if a failed access occurs. 
Therefore, the computational cost of the struggle 
operator is O(pop_size + intermediate_pop_size). 
 

4. Experimental Results  
 

In this Section, we present the experimental study of 
the proposed hash-based Struggle GA. Initially we 
generated a set of instances according to ETC matrix 
model in order to study the performance of the three 
key definitions and also to fine tune the rest of the 
parameters of Struggle GA. The best resulting 
configuration was then used for studying the 
performance of the SGA on a set of known instances 
from Braun et al. [8]. 
 
4.1. Performance comparison of struggle hash 

operators 
 
The performance of the three struggle operators 
resulting from Key_a, Key_b and Key_c definitions were 
measured for makespan value of the schedule. For any 
of them, the same configuration of parameters (see 
Table 1 below) was used.  
     
Table 1: Parameter configuration of Struggle 
GA. 

nb_evolution_steps (max 90s) 

pop_size 10 

intermediate_pop_size 6 (60%) 

cross_probability 0.9 

mutate_probability 0.4 

start_choice MCT and  LJFR-SJFR 

select_choice N tournament 

cross_choice Fitness Based Crossover 

Mutate_choice rebalance-both 

 

In Table 1, MCT (Minimum Completion time) and 
LJFR-SJFR (Longest Job to Fastest Resource – 
Shortest Job to Fastest Resource) are two methods used 
in  initializing the population; rebalance-both is a 
mutation operator based on load balancing of 
resources. 
 We show in Figure 2, the makespan value computed 
by the SGA algorithm with Hamming distance measure 
(denoted SGA struggle quadratic) of similarity against 
the SGA+ a key, b key and c key implementations. 
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Figure 2. Comparison of makespan values (in 
arbitrary time units) obtained with four 
versions of SGA. 
 
As evident from Figure 2, the a key implementation of 
SGA  performs very poorly –it’s not able even to 
mimic the behavior of SGA struggle quadratic– recall 
that the measure of similarity related to the a key is just 
the fitness. On the other hand, b key and c key behave 
coherently. As expected, the c key outperforms both the 
SGA struggle quadratic and the b key implementation. 

It’s worth observing that the c key implementation 
achieves a faster reduction in makespan value –which 
is certainly desirable for Grid schedulers running in 
short periods of time.  
   In order to better understand the behaviour of the 
three hash-based SGA implementations, we monitored 
the similarity value computed by each of them (see 
Table 2 below). It can be seen that, except the a key 
case, the rest used the same similarity value. The best 
performance of c key implementation could be 
explained on the one hand due to its time efficiency 
(especially when compared with SGA struggle 
quadratic) and due to the fact that it achieves to 
introduce an new individual of better genetic 
information in the population.  
 

 



Table 2. Similarity value of the studied 
Struggle GAs. 

SGA version Similarity value (averaged) 

SGA struggle quadratic 0,975 

a key SGA 0,736 

b key SGA 0,958 

c key SGA 0,965 

 

Another benefit of using the hash-based struggle 
implementation is the scalability. Indeed, since the 
computational time now is scaled down to a linear 
order, we could increase the size of both population 
and that of intermediate population without affecting 
the search time of the GA. We observed this 
experimentally (hereafter, the c key SGA is used); we 
show this effect by considering a population of 30 
individuals and intermediate population of 50% of 
population size and then by increasing the population 
size to 80 individuals. The graphical representation is 
shown in Figures 3 and 4. 

 
Figure 3. Makespan reduction of c key SGA vs. 
SGA struggle quadratic using a population of 
30 individuals and intermediate population 
size of 50%. 

 
Figure 4. Makespan reduction of c key SGA vs. 
SGA struggle quadratic using a population of 
80 individuals and intermediate population 
size of 50%. 
 
Effectively, we can see from Figures 3 and 4 that, while 
for a population of size 30 the two SGA perform 
almost equally, by enlarging the population size to 80 

individuals, the makespan reduction is much faster for 
the c key SGA than SGA struggle quadratic. 
 
4.2. Computational results for a static 

benchmark 
 
We present here some computational results for the c 

key SGA implementation for 12 instances from the 
static benchmark from Braun et al. [8].  The parameter 
configuration used is that of Table 1. The results given 
next are averaged over 10 independents runs, each of 
them running for at most 90 sec.; the same machine of 
standard configuration was used.  
    The computational results are shown in Table 3. The 
first column indicates the instance name. Here, the 
notation u_x_yyzz.0 means: u—uniform distribution, 
x—inconsistency (c—consistent, i—inconsistent and 
s—semi-consistent), yy—job heterogeneity (hi—high, 
lo—low), zz—machine heterogeneity (hi—high, lo—
low); each instance consists of 512 jobs and 16 
machines. Note that considered instances are 
representing different heterogeneous computing 
environments (four instances for consistent, semi-
consistent and inconsistent, respectively). The second 
column indicates the makespan value obtained with the 
SGA (struggle quadratic) and the third one the 
makespan value obtained with SGA (c key hash 
implementation). Values in bold face show the best 
makespan of the two implementations. 
 
Table 3: Makespan values for Braun et al. 
instances obtained with SGA (struggle 
quadratic) and SGA with c key hash 
implementation 

Instance 
SGA   

(struggle 
quadratic) 

SGA (c key Hash) 

u_c_hihi.0 7722057,537 7752689,084 

u_c_hilo.0 157009,284 156680,578 

u_c_lohi.0 253843,0 253926,055 

u_c_lolo.0 5271,765 5251,1462 

u_i_hihi.0 3269481,011 3161104,915 

u_i_hilo.0 76413,844 75598,481 

u_i_lohi.0 116981,385 111792,174 

u_i_lolo.0 2634,997 2620,7218 

u_s_hihi.0 4473513,333 4433792,275 

u_s_hilo.0 98782,703 98560,043 

u_s_lohi.0 132971,473 130425,852 

u_s_lolo.0 3565,905 3534,306 

 
As evident from Table 3, SGA with c key hash 
implementation outperforms SGA struggle quadratic 



implementation. Moreover, the SGA with c key hash 
implementation shows to be robust, it performs well for 
three types of instances (consistent, inconsistent and 
semi-consistent). 

5. Conclusions and future work  
 
In this paper we have presented some results on tuning 
Struggle GAs the problem of scheduling of 
independent jobs in computational grids. This version 
of the scheduling requires fast reduction of makespan 
due to the changeability of the computational 
environment.  In this work we have proponed hash-
based implementations of the struggle genetic operator 
for the Gas for the problem. The resulting struggle 
operator showed several good properties: 

• It is efficient: the quadratic computational 
time (in terms of the population time) is 
reduced to a linear time and hence the overall 
proper search time of the GA is increased. 

• It allows to efficiently tackling large scale 
scheduling problems by considering larger 
size populations, due to the linear factor 
computational time. 

• It achieves to introduce new individuals of 
better genetic information into new 
generation. 

• It is robust: the resulting Struggle GA 
performed very well on almost all considered 
instances representing different heterogeneous 
computing environments. 

In our future work, we plan to consider other similarity 
measures, now based on binary representations of task-
resource allocation. Also, we would like to consider 
clustering-like techniques, for instance, K-clustering, to 
increase the performance of the struggle operator. 
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