
Tuning Struggle Strategy in Genetic Algorithms for Scheduling in

Computational Grids

Fatos Xhafa and Bernat Duran
Department of Languages and Informatic Systems

Technical University of Catalonia

Barcelona, Spain

{fatos,bduran}lsi.upc.edu
Ajith Abraham

Center of Excellence for Quantifiable Quality of Service,

Norwegian University of Science and Technology,

Trondheim, Norway

 ajith.abraham@ieee.org
Keshav P. Dahal

School of Informatics, University of Bradford, Bradford BD7 1DP, UK

k.p.dahal@Bradford.ac.uk

Abstract

Job Scheduling on Computational Grids is gaining

importance due to the need for efficient large-scale

Grid-enabled applications. Among different

optimization techniques addressed for the problem,

Genetic Algorithm (GA) is a popular class of solution

methods. As GAs are high level algorithms, specific

algorithms can be designed by choosing the genetic

operators as well as the evolutionary strategies. In this

paper we focus on Struggle GAs and their tuning for

the scheduling of independent jobs in computational

grids. Our results showed that a careful hash

implementation for computing the similarity of

solutions was able to alleviate the computational

burden of Struggle GA and perform better than

standard similarity measures.

1. Introduction

With the emerging paradigm of Grid Computing and
the development of Grid infrastructures, Grid-based
applications are becoming a common approach for
solving many complex problems. A key issue in this
kind of applications is scheduling jobs into Grid
resources efficiently, which is known to be
computationally hard and much more difficult than its
standard version for sequential or LAN computation
environments.

 Job Scheduling on Computational Grids is gaining
importance due to the need for efficient large-scale
Grid-enabled applications, e.g. in Optimization
(Casanova et al. [1], Goux et al. [2] and Wright [3]),
Collaborative/eScience Computing (Newman et al. [4],
Paniagua et al. [5]) and many applications arising from
concrete types of eScience Grids such as Science
Grids, Access Grids, Knowledge Grids and in Data-
Intensive Computing (Beynon al. [6]). Scheduling is a
challenging problem in a Grid environment due its
dynamic nature and the large number of resources to be
managed and jobs to be scheduled. Furthermore,
resources can have their own local policies (regarding
access, cost etc.) to be taken into account. The problem
is multi-objective in its general definition, as there are
several optimization criteria to be matched, such as
makespan, flowtime, and resource utilization.

Several approaches are being addressed in the
literature for the problem (Abraham et al. [7], Braun et
al. [8], Xhafa [9], Xhafa et al. [10, 11], Zomaya et al.
[12]) aiming to obtain schedulers capable of delivering
fast planning of jobs to computational resources of the
grid system. In particular, Genetic Algorithms (GA)
[13] have proved to be a good alternative for solving a
wide variety of hard combinatorial optimization
problems. GAs are a population-based approach where
individuals represent possible solutions, which are
successively evaluated, selected, crossovered, mutated
and replaced by simulating the Darwinian evolution
found in nature.

The research work on GAs has shown that a key
issue in GAs is the convergence of the algorithm: a fast
convergence of the population would stagnate the
search to local optima whereas slower convergence
would require a considerably longer time towards sub-
optimal solutions. The convergence of GAs is achieved
by means of selection and replacement strategies and it
is, therefore, very important to carefully tune these
strategies. In particular, the selective pressure directly
affects the tradeoff between the exploration and
exploitation of the search space. Indeed, if the
population converges rapidly GA would give more
priority to the exploitation and, vice-versa, when the
population is kept diverse, other regions of the search
space would be explored aspiring thus to find better
solutions.

In this work, we focus on the importance of tuning
the replacement mechanism of GA for scheduling in
computational grids. The interest in investigating this
aspect is motivated by the need to design efficient
schedulers that will be able to deliver fast and quality
planning of jobs to resources rather optimal solutions
in a dynamic environment. More precisely, we study
the tuning of the Struggle strategy (Grueninger [14]),
which is known for its effectiveness but suffers from a
high computational cost.

The rest of the paper is organized as follows. In
Section 2, we briefly present the scheduling of
independent jobs considered in this work. The Struggle
strategy together with similarity measures are
introduced in Section 3. The experimental study and
some computational results are given in Section 4. We
conclude in Section 5 with some remarks and
indications for future work.

2. Problem definition

In this work we consider the problem formulation of
job scheduling based on the Expected Time To
Compute (ETC) simulation model of Braun et al. [8].
An instance of the problem consists of the following.
• A number of independent (user/application) jobs

that must be scheduled. Any job has to be
processed entirely in a unique resource (non-
preemptive mode).

• A number of heterogeneous machines candidates
to participate in the planning.

• The workload of each job (in millions of
instructions).

• The computing capacity of each machine (in
millions of instructions per second –mips).

• For any machine m, the time when the machine
will have finished the previously assigned jobs

(ready[m]). This parameter measures the previous
workload of a machine.

• The Expected Time to Compute (ETC) matrix of
size number_jobs × number_machines, where a
position ETC[i][j] indicates the expected
execution time of job i in machine j. This matrix is
either computed from the information on workload
and mips or can be explicitly provided.

We aim to minimize the makespan and flowtime and
utilize the resources effectively. These parameters are
defined as follows.

• Makespan is the finishing time of latest job:

minschedule max {Fj: j∈Jobs} (1)
where Fj is the finishing time of job j.

• Flowtime is the sum of finishing times of jobs:
minschedule ∑ j∈Jobs Fj (2)

 The aforementioned parameters are very important for
studying and characterizing any Grid system.
Makespan measures the productivity (throughput) of
the grid system whereas the flowtime measures the QoS
of the Grid system.

3. Struggle strategy in GAs and similarity

measures

In Struggle GAs (hereafter, SGA) [14], a new
generation of individuals is created by replacing only a
portion of the population with the new individuals.
Unlike other replacement strategies, in SGA, a new
individual replaces the individual that is most similar to
it only in case the new individual obtains a better
fitness value than the one to be replaced. This is done
in order to adaptively maintain certain diversity among
the population. The aim is to preserve the optimization
velocity but delaying its tendency to converge in order
to reach a better convergence point.
 This strategy has shown to be very effective for
many problems yet, there is a critical issue here: the
computational cost of this replacement strategy is very
high. Indeed, in order to find which individuals should
leave the population, any new individual of the
intermediate population has to be compared and its
similarity measured against all the individuals of the
current population. Obviously, this leads to a quadratic
order computational time, which could be very large, if
large size populations were to be considered. In fact,
this is precisely the case of scheduling independent
jobs in computational grids; their large scale and
scalability are critical factors since not only the number
of resources and jobs submitted to the Grid system are
expected to be large or very large but also they could

6 5 2 4 3 1 7

 1 2 3 4 5 6

2

4

 1

 5

increase over time. It is clear that similarity measures
which are not efficient could consume much of the GA
running time in detriment to the proper search time.

3.1. Standard similarity measures

In order to compare the similarity between solutions, a
measure of similarity or distance function has to be
defined and used. Standard similarity measures include:
• Hamming distance: given two individuals S1 and S2

encoding two schedulings of N jobs, let g[i]=1, iff
S1[i] = S2[i] and g[0]=0, otherwise. Similarity is
then calculated as Simh(S1,S2)=∑{i=1..N} g[i]/N.

• Euclidian distance: This similarity is based on the
Euclidean distance. Given two vector solutions S1
and S2, by considering them as two points in N-
dimensional space, the similarity is then computed
as the Euclidean distance between them:

Sime(S1,S2) = ∑
=

−

N

i

iSiS
1

2])[2][1((3)

• Cosine distance: In this case, the similarity is
measured using the angle of the two vector solutions
S1 and S2 of the N-dimensional space. Cosine values
close to 1 would mean more similarity.

Simc(S1,S2)=

∑∑

∑

==

=

N

i

N

i

N

i

iSiS

iSiS

1

2

1

2

1

][2][1

][2]·[1 (4)

3.2. Hash-based similarity measure

The standard similarity measures given above has
linear time computational cost in number of jobs.
Therefore for a population of pop_size the standard
struggle strategies would take O(intermediate_pop_size

× pop_size) × N. Reducing the quadratic factor of
O(intermediate_pop_size × pop_size) to a linear time
factor would be very desirable in this case since in each
replacement step it would take a considerable time in
detriment to the proper search time of the GA. In order
to achieve this, we propose the use of hash techniques
so that given a new individual of the intermediate
population we can find in constant time the individual
most similar to it.
 In order to design the hash table, we have to first
define the key to identify the individuals of the
population. The key information is the basis for
computing the degree of similarity of the struggle
genetic operator: the more accurate its definition the
better the performance of the operator. In fact, a poor
definition of the key would simply reduce the struggle
operator to a random replacement. In our definition of
the key the context is crucial: the key value should

resume as much as possible the genetic information
encoded in an individual; hence, if two key values are
similar then their respective individuals are genetically
similar. The following are three possible definitions:
a) Fitness-based key: consists in using the fitness

value, which is transformed, using a hash function,
into the key value. Certainly this is a very
simplistic approach by simply looking at
makespan and flowtime values and clearly no
genetic information is taken into account (we refer
to this as ‘a’ key).

b) Position-based key: having the permutation vector
of task-resource allocation, in which tasks are
sorted according to the resource they are assigned
to, the key is defined as the sum of number of cells
a component of the vector would move to the right
as indicated by its value, when the vector is read in
a circular way (we refer to this as ‘b’ key). For
instance, for the vector of 7 tasks in Figure 1
below, key=2+4+1+0+2+5+0=14.

Figure 1. Example position-based key
calculation.

Note that this definition uses the genetic
characteristics of the solution; however, the
relation task-resource is not explicitly taken into
account, i.e., to which resource is assigned a task.

c) Task-resource allocation key: In this case both
information on tasks and resources is used. The
key value is now the sum of the absolute values of
the subtraction of each position and its precedent
in the vector of task-resource allocation (reading
the vector in a circular way); we refer to this as ‘c’

key.

The hash function is then defined as:

 0, if k < kmin

fhash (k) =

−

−

minmax

min

kk

kk
N , if kmin ≤ k < kmax, (5)

 N-1, if k ≥ kmax

where kmin and kmax correspond to the smallest and
largest key value, respectively, in the population. The
hash table has the same size as the population in order
to obtain constant time access (in average). If an access
fails, a few individuals in the population are randomly
chosen and the most similar to the new one is
considered for the replacement. Hence, the constant
access is always ensured even if a failed access occurs.
Therefore, the computational cost of the struggle
operator is O(pop_size + intermediate_pop_size).

4. Experimental Results

In this Section, we present the experimental study of
the proposed hash-based Struggle GA. Initially we
generated a set of instances according to ETC matrix
model in order to study the performance of the three
key definitions and also to fine tune the rest of the
parameters of Struggle GA. The best resulting
configuration was then used for studying the
performance of the SGA on a set of known instances
from Braun et al. [8].

4.1. Performance comparison of struggle hash

operators

The performance of the three struggle operators
resulting from Key_a, Key_b and Key_c definitions were
measured for makespan value of the schedule. For any
of them, the same configuration of parameters (see
Table 1 below) was used.

Table 1: Parameter configuration of Struggle
GA.

nb_evolution_steps (max 90s)

pop_size 10

intermediate_pop_size 6 (60%)

cross_probability 0.9

mutate_probability 0.4

start_choice MCT and LJFR-SJFR

select_choice N tournament

cross_choice Fitness Based Crossover

Mutate_choice rebalance-both

In Table 1, MCT (Minimum Completion time) and
LJFR-SJFR (Longest Job to Fastest Resource –
Shortest Job to Fastest Resource) are two methods used
in initializing the population; rebalance-both is a
mutation operator based on load balancing of
resources.
 We show in Figure 2, the makespan value computed
by the SGA algorithm with Hamming distance measure
(denoted SGA struggle quadratic) of similarity against
the SGA+ a key, b key and c key implementations.

7000000

8000000

9000000

10000000

11000000

12000000

13000000

0 20 40 60 80
sec

M
a
k
e

s
p

a
n

SGA struggle quadratic a key

b key c key

a key

b key

SGA struggle

quadratic
c key

Figure 2. Comparison of makespan values (in
arbitrary time units) obtained with four
versions of SGA.

As evident from Figure 2, the a key implementation of
SGA performs very poorly –it’s not able even to
mimic the behavior of SGA struggle quadratic– recall
that the measure of similarity related to the a key is just
the fitness. On the other hand, b key and c key behave
coherently. As expected, the c key outperforms both the
SGA struggle quadratic and the b key implementation.

It’s worth observing that the c key implementation
achieves a faster reduction in makespan value –which
is certainly desirable for Grid schedulers running in
short periods of time.
 In order to better understand the behaviour of the
three hash-based SGA implementations, we monitored
the similarity value computed by each of them (see
Table 2 below). It can be seen that, except the a key
case, the rest used the same similarity value. The best
performance of c key implementation could be
explained on the one hand due to its time efficiency
(especially when compared with SGA struggle
quadratic) and due to the fact that it achieves to
introduce an new individual of better genetic
information in the population.

Table 2. Similarity value of the studied
Struggle GAs.

SGA version Similarity value (averaged)

SGA struggle quadratic 0,975

a key SGA 0,736

b key SGA 0,958

c key SGA 0,965

Another benefit of using the hash-based struggle
implementation is the scalability. Indeed, since the
computational time now is scaled down to a linear
order, we could increase the size of both population
and that of intermediate population without affecting
the search time of the GA. We observed this
experimentally (hereafter, the c key SGA is used); we
show this effect by considering a population of 30
individuals and intermediate population of 50% of
population size and then by increasing the population
size to 80 individuals. The graphical representation is
shown in Figures 3 and 4.

Figure 3. Makespan reduction of c key SGA vs.
SGA struggle quadratic using a population of
30 individuals and intermediate population
size of 50%.

Figure 4. Makespan reduction of c key SGA vs.
SGA struggle quadratic using a population of
80 individuals and intermediate population
size of 50%.

Effectively, we can see from Figures 3 and 4 that, while
for a population of size 30 the two SGA perform
almost equally, by enlarging the population size to 80

individuals, the makespan reduction is much faster for
the c key SGA than SGA struggle quadratic.

4.2. Computational results for a static

benchmark

We present here some computational results for the c

key SGA implementation for 12 instances from the
static benchmark from Braun et al. [8]. The parameter
configuration used is that of Table 1. The results given
next are averaged over 10 independents runs, each of
them running for at most 90 sec.; the same machine of
standard configuration was used.
 The computational results are shown in Table 3. The
first column indicates the instance name. Here, the
notation u_x_yyzz.0 means: u—uniform distribution,
x—inconsistency (c—consistent, i—inconsistent and
s—semi-consistent), yy—job heterogeneity (hi—high,
lo—low), zz—machine heterogeneity (hi—high, lo—
low); each instance consists of 512 jobs and 16
machines. Note that considered instances are
representing different heterogeneous computing
environments (four instances for consistent, semi-
consistent and inconsistent, respectively). The second
column indicates the makespan value obtained with the
SGA (struggle quadratic) and the third one the
makespan value obtained with SGA (c key hash
implementation). Values in bold face show the best
makespan of the two implementations.

Table 3: Makespan values for Braun et al.
instances obtained with SGA (struggle
quadratic) and SGA with c key hash
implementation

Instance
SGA

(struggle
quadratic)

SGA (c key Hash)

u_c_hihi.0 7722057,537 7752689,084

u_c_hilo.0 157009,284 156680,578

u_c_lohi.0 253843,0 253926,055

u_c_lolo.0 5271,765 5251,1462

u_i_hihi.0 3269481,011 3161104,915

u_i_hilo.0 76413,844 75598,481

u_i_lohi.0 116981,385 111792,174

u_i_lolo.0 2634,997 2620,7218

u_s_hihi.0 4473513,333 4433792,275

u_s_hilo.0 98782,703 98560,043

u_s_lohi.0 132971,473 130425,852

u_s_lolo.0 3565,905 3534,306

As evident from Table 3, SGA with c key hash
implementation outperforms SGA struggle quadratic

implementation. Moreover, the SGA with c key hash
implementation shows to be robust, it performs well for
three types of instances (consistent, inconsistent and
semi-consistent).

5. Conclusions and future work

In this paper we have presented some results on tuning
Struggle GAs the problem of scheduling of
independent jobs in computational grids. This version
of the scheduling requires fast reduction of makespan
due to the changeability of the computational
environment. In this work we have proponed hash-
based implementations of the struggle genetic operator
for the Gas for the problem. The resulting struggle
operator showed several good properties:

• It is efficient: the quadratic computational
time (in terms of the population time) is
reduced to a linear time and hence the overall
proper search time of the GA is increased.

• It allows to efficiently tackling large scale
scheduling problems by considering larger
size populations, due to the linear factor
computational time.

• It achieves to introduce new individuals of
better genetic information into new
generation.

• It is robust: the resulting Struggle GA
performed very well on almost all considered
instances representing different heterogeneous
computing environments.

In our future work, we plan to consider other similarity
measures, now based on binary representations of task-
resource allocation. Also, we would like to consider
clustering-like techniques, for instance, K-clustering, to
increase the performance of the struggle operator.

Acknowledgment

This research is partially supported by Projects ASCE
TIN2005- 09198-C02-02, FP6-2004-ISO-FETPI
(AEOLUS) and MEC TIN2005-25859-E and
MEFOALDISI (Métodos formales y algoritmos para el
diseño de sistemas) TIN2007-66523.

References

[1] Casanova, H. and Dongarra, J.: Netsolve: Network

enabled solvers. IEEE Computational Science and
Engineering, 5(3):57-67, 1998.

[2] Goux, J.P., Kulkarni, S., Linderoth, J. and Yoder, M.:
An enabling framework for master-worker applications
on the computational grid. In 9th IEEE International

Sympo-sium on High Performance Distributed
Computing (HPDC'00). IEEE Computer Society, 2000.

[3] Wright, S.J.: Solving optimization problems on
computational grids. Optima, 65, 2001.

[4] Newman, H.B., Ellisman, M.H. and Orcutt, J.A.: Data-
intensive e-science frontier research, Communications of
ACM, 46(11):68-77, 2003.

[5] Paniagua, C., Xhafa, F., Caballé, S. and Daradoumis,
Th.: A parallel grid-based implementation for real time
processing of event log data in collaborative
applications. In Parallel and Distributed Processing
Techniques (PDPT2005), Las Vegas, USA, 2005.

[6] Beynon, M.D ., Sussman, A., Çatalyürek, Ü, Kure, T.
and Saltz, J.: Optimization for data intensive grid
applications. In Third Annual International Workshop
on Active Middleware Services, pp. 97-106, 2001.

[7] Abraham, A., Buyya, R. and Nath, B. Nature's heuristics
for scheduling jobs on computational grids, The 8th
IEEE International Conference on Advanced Computing
and Communications (ADCOM 2000) India, 45--52,
2000.

[8] Braun, H.J., Siegel, T.D., Beck, N., Bölöni, L.L.,
Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys,
M.D. and Yao, B.: A comparison of eleven static
heuristics for mapping a class of independent jobs onto
heterogeneous distributed computing systems. Journal of
Parallel and Distributed Computing, 61(6):810--837,
2001.

[9] Xhafa, F. A Hyper-heuristic for Adaptive Scheduling in
Computational Grids, International Journal on Neural
and Mass-Parallel Computing and Information Systems,
17(6), 639-656, 2007.

[10] Xhafa, F., Alba, E., Dorronsoro, B. and Duran, B.
Efficient Batch Job Scheduling in Grids using Cellular
Memetic Algorithms, Journal of Mathematical
Modelling and Algorithms, Published Online DOI:
http://dx.doi.org/10.1007/s10852-008-9076-y

[11] Xhafa, F., Barolli, L. and Durresi, A. An Experimental
Study On Genetic Algorithms for Resource Allocation
On Grid Systems, Journal of Interconnection Networks,
Volume: 8, Issue: 4 (December 2007), 427 - 443,
World Sci. Pub.

[12] Zomaya, A.Y. and Teh, Y.H. Observations on using
genetic algorithms for dynamic load-balancing, IEEE
Transactions On Parallel and Distributed Systems,
12(9):899--911, 2001.

[13] J.H.~Holland. Adaptation in Natural and Artificial
Systems, University of Michigan Press, Ann Arbor, MI,
1975.

[14] Grueninger, T.: Multimodal optimization using genetic
algorithms. Technical report. Department of Mechanical
Engineering, MIT, Cambridge, MA, 1997.

[15] Fogel, D.B.: Evolutionary computation: toward a new
philosophy of machine intelligence. IEEE Press
Piscataway, NJ, USA, 1995.

[16] Ashlock, D.: Evolutionary Computation for Modeling
and Optimization. Springer Verlag, 2005.

